""" model.py Defines a Transformer‐based language model from scratch, using PyTorch’s nn.Transformer. No pretrained weights—everything is initialized randomly. """ import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model: int, max_len: int = 10_000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # shape: (1, max_len, d_model) self.register_buffer("pe", pe) def forward(self, x: torch.Tensor) -> torch.Tensor: """ x: (batch_size, seq_length, d_model) returns x + positional encodings for the first seq_length positions. """ x = x + self.pe[:, : x.size(1), :] return x class NoraTransformerLM(nn.Module): def __init__( self, vocab_size: int, d_model: int = 512, nhead: int = 8, num_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, max_seq_len: int = 512, ): super().__init__() self.model_type = "TransformerLM" self.d_model = d_model self.vocab_size = vocab_size # Token embedding + positional encoding self.token_embed = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(d_model, max_len=max_seq_len) # Transformer encoder layers encoder_layers = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation="gelu", ) self.transformer_encoder = nn.TransformerEncoder( encoder_layers, num_layers=num_layers ) # Final linear layer to project to vocabulary self.fc_out = nn.Linear(d_model, vocab_size) # Initialization self._init_weights() def _init_weights(self): nn.init.normal_(self.token_embed.weight, mean=0, std=self.d_model ** -0.5) nn.init.zeros_(self.fc_out.bias) nn.init.normal_(self.fc_out.weight, mean=0, std=self.d_model ** -0.5) def forward(self, src: torch.Tensor) -> torch.Tensor: """ src: (batch_size, seq_length), token IDs returns: logits (batch_size, seq_length, vocab_size) """ # Embed tokens and add positional encoding x = self.token_embed(src) * math.sqrt(self.d_model) # (B, S, D) x = self.pos_encoder(x) # (B, S, D) # PyTorch Transformer expects (S, B, D) x = x.permute(1, 0, 2) # (seq_length, batch_size, d_model) # Create a causal mask so each position can only attend to previous positions seq_len = x.size(0) mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool() # Pass through Transformer encoder x = self.transformer_encoder(x, mask=mask) # (seq_length, batch_size, d_model) # Back to (B, S, D) x = x.permute(1, 0, 2) # (batch_size, seq_length, d_model) logits = self.fc_out(x) # (batch_size, seq_length, vocab_size) return logits