added a brainmap checker,

Fixed the trainer and reader
This commit is contained in:
Dani 2025-04-27 16:40:50 -04:00
parent ec82d0ab63
commit 4d4b39b4c7
4 changed files with 150 additions and 56 deletions

View File

@ -1,59 +1,98 @@
import os import re
import json import json
from collections import defaultdict import os
from utils.unicleaner import clean_unicode from utils.unicleaner import clean_unicode
BRAINMAP_FILE = "data/memory/brainmap.json" BRAINMAP_PATH = "data/memory/brainmap.json"
brainmap = {}
MAX_CONNECTIONS = 50 # Max neighbors to keep per word
def is_valid_brainword(word: str) -> bool:
word = clean_unicode(word.strip())
if len(word) < 3:
return False
if re.fullmatch(r"\d+", word): # Pure numbers
return False
if re.fullmatch(r"(i|ii|iii|iv|v|vi|vii|viii|ix|x|xi|xii|xiii|xiv|xv)", word.lower()):
return False
if not word.isascii():
return False
if re.search(r"[^a-zA-Z0-9\-]", word): # Block weird characters except dash
return False
return True
def load_brainmap(): def load_brainmap():
if os.path.exists(BRAINMAP_FILE): global brainmap
with open(BRAINMAP_FILE, "r", encoding="utf-8") as f: if os.path.exists(BRAINMAP_PATH):
return json.load(f) with open(BRAINMAP_PATH, "r", encoding="utf-8") as f:
return {} brainmap = json.load(f)
def save_brainmap(map_data): def save_brainmap():
with open(BRAINMAP_FILE, "w", encoding="utf-8") as f: with open(BRAINMAP_PATH, "w", encoding="utf-8") as f:
json.dump(map_data, f, indent=2) json.dump(brainmap, f, indent=2)
brain_map = load_brainmap() def add_to_brainmap(words):
if isinstance(words, str):
words = words.split()
cleaned_words = [w.lower() for w in words if is_valid_brainword(w)]
def update_brainmap(words): updated = False
for i, word in enumerate(words):
for j in range(i+1, len(words)): for i, word in enumerate(cleaned_words):
w1 = word if word not in brainmap:
w2 = words[j] brainmap[word] = {}
if w1 == w2: updated = True
neighbors = cleaned_words[max(0, i-2):i] + cleaned_words[i+1:i+3]
for neighbor in neighbors:
if neighbor == word or not is_valid_brainword(neighbor):
continue continue
if w1 not in brain_map: previous_count = brainmap[word].get(neighbor, 0)
brain_map[w1] = {} brainmap[word][neighbor] = previous_count + 1
if w2 not in brain_map[w1]: if previous_count == 0:
brain_map[w1][w2] = 0 updated = True
brain_map[w1][w2] += 1
save_brainmap(brain_map) # Limit neighbors
if len(brainmap[word]) > MAX_CONNECTIONS:
brainmap[word] = dict(sorted(brainmap[word].items(), key=lambda x: x[1], reverse=True)[:MAX_CONNECTIONS])
if updated:
save_brainmap()
def prune_brainmap(min_neighbors=2, min_strength=2):
"""
Remove weakly connected or isolated words from the brainmap.
Args:
min_neighbors (int): Minimum neighbors required to keep a word.
min_strength (int): Minimum strength (connection count) for neighbors.
"""
global brainmap
to_delete = []
for word, neighbors in brainmap.items():
# Clean weak neighbors
weak_neighbors = [n for n, count in neighbors.items() if count < min_strength]
for n in weak_neighbors:
del neighbors[n]
# Delete word if too few neighbors remain
if len(neighbors) < min_neighbors:
to_delete.append(word)
for word in to_delete:
del brainmap[word]
save_brainmap()
def get_brainmap(): def get_brainmap():
return brain_map return brainmap
def fix_brainmap(brainmap: dict) -> dict:
cleaned_brainmap = {}
for word, value in brainmap.items():
cleaned_word = clean_unicode(word.strip())
# Skip bad entries
if not cleaned_word or cleaned_word in {"...", "-", "--", "''", '""'}:
continue
# Merge duplicates (case-insensitive optional)
if cleaned_word in cleaned_brainmap:
cleaned_brainmap[cleaned_word] += value
else:
cleaned_brainmap[cleaned_word] = value
return cleaned_brainmap

View File

@ -0,0 +1,39 @@
import json
import os
BRAINMAP_PATH = "data/memory/brainmap.json"
def analyze_brainmap(path=BRAINMAP_PATH):
if not os.path.exists(path):
print("No brainmap found.")
return
with open(path, "r", encoding="utf-8") as f:
brainmap = json.load(f)
total_words = len(brainmap)
total_neighbors = 0
orphan_words = 0
weak_links = 0
for word, neighbors in brainmap.items():
num_neighbors = len(neighbors)
total_neighbors += num_neighbors
if num_neighbors <= 1:
orphan_words += 1
weak_links += sum(1 for strength in neighbors.values() if strength <= 2)
avg_neighbors = total_neighbors / total_words if total_words else 0
print(f"📖 Brainmap Analysis:")
print(f"- Total Words: {total_words}")
print(f"- Average Neighbors per Word: {avg_neighbors:.2f}")
print(f"- Orphan Words (<=1 neighbor): {orphan_words}")
print(f"- Weak Connections (strength <=2): {weak_links}")
if __name__ == "__main__":
analyze_brainmap()

View File

@ -2,7 +2,7 @@ import torch
import time import time
from model.dynamic_expand import expand_model_if_needed, _last_expansion_time, get_optimizer, expand_lock from model.dynamic_expand import expand_model_if_needed, _last_expansion_time, get_optimizer, expand_lock
from model.brain_state import model, tokenizer, DEVICE, loss_fn from model.brain_state import model, tokenizer, DEVICE, loss_fn
from model.brainmap import update_brainmap from model.brainmap import add_to_brainmap
from context.context import add_to_context, get_recent_context from context.context import add_to_context, get_recent_context
LOSS_FILE = "data/logs/loss.log" LOSS_FILE = "data/logs/loss.log"
@ -69,7 +69,7 @@ def train_on_message(text: str, source: str = "user"):
log_loss(loss.item()) log_loss(loss.item())
log_vocab_growth() log_vocab_growth()
add_to_context(text, source=source) add_to_context(text, source=source)
update_brainmap(augmented_text.split()) add_to_brainmap(augmented_text.split())
finally: finally:
expand_lock.release() expand_lock.release()

View File

@ -1,13 +1,13 @@
import os import os
import asyncio import asyncio
import json
from model.trainer import train_on_message from model.trainer import train_on_message
from model.scheduler import set_next_action from model.scheduler import set_next_action
from reader.filter import is_valid_line from reader.filter import is_valid_line
import json
BOOK_DIR = "data/books" BOOK_DIR = "data/books"
PROGRESS_FILE = "data/memory/book_progress.json" PROGRESS_FILE = "data/memory/book_progress.json"
READ_DELAY = 0.2 # seconds between lines READ_DELAY = 0.2 # seconds between paragraphs
PARAGRAPH_MIN_LENGTH = 20 PARAGRAPH_MIN_LENGTH = 20
@ -19,7 +19,7 @@ def load_progress():
if os.path.exists(PROGRESS_FILE): if os.path.exists(PROGRESS_FILE):
with open(PROGRESS_FILE, "r", encoding="utf-8") as f: with open(PROGRESS_FILE, "r", encoding="utf-8") as f:
return json.load(f) return json.load(f)
return {} return {"progress": {}, "completed": []}
def save_progress(prog): def save_progress(prog):
@ -29,9 +29,23 @@ def save_progress(prog):
async def read_books_forever(): async def read_books_forever():
books = get_books() books = get_books()
progress = load_progress() progress_data = load_progress()
progress = progress_data.get("progress", {})
completed_books = progress_data.get("completed", [])
while True: while True:
for book in books: # Filter out completed books
available_books = [b for b in books if b not in completed_books]
if not available_books:
print("[Reader] All books completed. Resetting progress.")
progress_data = {"progress": {}, "completed": []}
save_progress(progress_data)
available_books = books # Re-enable all books
progress = {}
completed_books = []
for book in available_books:
path = os.path.join(BOOK_DIR, book) path = os.path.join(BOOK_DIR, book)
if not os.path.exists(path): if not os.path.exists(path):
continue continue
@ -56,10 +70,12 @@ async def read_books_forever():
paragraph += " " + line paragraph += " " + line
progress[book] = idx progress[book] = idx
save_progress(progress) progress_data["progress"] = progress
save_progress(progress_data)
# train last paragraph if any # End of book
if paragraph and len(paragraph) > PARAGRAPH_MIN_LENGTH: if idx >= len(lines):
train_on_message(paragraph.strip(), source="book") print(f"[Reader] Finished reading {book}.")
await asyncio.sleep(READ_DELAY) completed_books.append(book)
set_next_action(READ_DELAY, "Reading") progress_data["completed"] = list(set(completed_books)) # Avoid duplicates
save_progress(progress_data)