Ruby, for now, generates a reply from her minimal vocab (She's only had one message as the time of this post.

This commit is contained in:
Dani 2025-04-13 19:16:16 -04:00
parent 7bed24a06b
commit 65cfe387bf
4 changed files with 164 additions and 3 deletions

1
.gitignore vendored
View File

@ -168,3 +168,4 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/ #.idea/
/tokenizer_vocab.txt

22
main.py
View File

@ -2,6 +2,8 @@ import discord
import os import os
from dotenv import load_dotenv from dotenv import load_dotenv
from datetime import datetime from datetime import datetime
from tokenizer import Tokenizer
from model import RubyTrainer
# Load environment # Load environment
load_dotenv() load_dotenv()
@ -19,6 +21,8 @@ intents = intents
class Ruby(discord.Client): class Ruby(discord.Client):
def __init__(self): def __init__(self):
super().__init__(intents=intents) super().__init__(intents=intents)
self.tokenizer = Tokenizer()
self.trainer = RubyTrainer(self.tokenizer)
self.log_path = os.path.join("logs", "messages.log") self.log_path = os.path.join("logs", "messages.log")
os.makedirs("logs", exist_ok=True) os.makedirs("logs", exist_ok=True)
@ -27,10 +31,18 @@ class Ruby(discord.Client):
async def on_message(self, message: discord.Message): async def on_message(self, message: discord.Message):
if message.author.id == self.user.id: if message.author.id == self.user.id:
return # ignore self return
self.log_message(message) self.log_message(message)
self.train_on_message(message) self.trainer.train_on_tokens_from_text(message.content.strip())
reply = self.trainer.generate_reply()
if reply.strip():
await message.channel.send(reply)
else:
print("[REPLY] Skipped (empty)")
def log_message(self, message: discord.Message): def log_message(self, message: discord.Message):
timestamp = datetime.utcnow().isoformat() timestamp = datetime.utcnow().isoformat()
@ -42,7 +54,11 @@ class Ruby(discord.Client):
print(f"[LOGGED] {log_entry.strip()}") print(f"[LOGGED] {log_entry.strip()}")
def train_on_message(self, message: discord.Message): def train_on_message(self, message: discord.Message):
print(f"[TRAIN] Simulating training on: \"{message.content.strip()}\"") text = message.content.strip()
self.trainer.train_on_tokens_from_text(text)
token_tensor = torch.tensor(tokens, dtype=torch.long)
loss = train_on_tokens(self.model, tokens, self.optimizer, self.criterion, device="cpu")
print(f"[TRAIN] Tokens: {tokens} | Loss: {loss:.4f}")
# Run Ruby # Run Ruby

106
model.py Normal file
View File

@ -0,0 +1,106 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class MiniGPT(nn.Module):
def __init__(self, vocab_size, embed_dim=128, n_heads=4, n_layers=2, max_len=128):
super().__init__()
self.token_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Embedding(max_len, embed_dim)
self.blocks = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=embed_dim, nhead=n_heads, batch_first=True)
for _ in range(n_layers)
])
self.ln_f = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(0, seq_len, device=x.device).unsqueeze(0)
x = self.token_embed(x) + self.pos_embed(pos)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
return self.head(x)
class RubyTrainer:
def __init__(self, tokenizer, embed_dim=128, n_heads=4, n_layers=2, max_len=128):
self.tokenizer = tokenizer
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.embed_dim = embed_dim
self.n_heads = n_heads
self.n_layers = n_layers
self.max_len = max_len
self.model = None
self.optimizer = None
self.criterion = torch.nn.CrossEntropyLoss()
self.rebuild_model_if_needed()
def rebuild_model_if_needed(self):
vocab_size = len(self.tokenizer.vocab)
if self.model is None or self.model.token_embed.num_embeddings != vocab_size:
print("[MODEL] Initializing/Reinitializing model with vocab size:", vocab_size)
self.model = MiniGPT(
vocab_size,
self.embed_dim,
self.n_heads,
self.n_layers,
self.max_len
).to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
def train_on_tokens_from_text(self, text: str):
tokens = self.tokenizer.tokenize(text)
if not tokens:
return
# Wrap with <START> and <END>
tokens = [self.tokenizer.vocab["<START>"]] + tokens + [self.tokenizer.vocab["<END>"]]
if len(tokens) < 2:
print("[TRAIN] Skipped (not enough tokens)")
return
self.rebuild_model_if_needed()
self.model.train()
x = torch.tensor(tokens[:-1], dtype=torch.long, device=self.device).unsqueeze(0)
y = torch.tensor(tokens[1:], dtype=torch.long, device=self.device).unsqueeze(0)
out = self.model(x)
loss = self.criterion(out.view(-1, out.size(-1)), y.view(-1))
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
print(f"[TRAIN] Tokens: {tokens} | Loss: {loss.item():.4f}")
def generate_reply(self, max_tokens=15, temperature=1.0, top_k=5):
self.model.eval()
input_ids = torch.tensor([[self.tokenizer.vocab["<START>"]]], dtype=torch.long, device=self.device)
for _ in range(max_tokens):
with torch.no_grad():
out = self.model(input_ids)
logits = out[:, -1, :] / temperature
if top_k > 0:
top_k_logits, top_k_indices = torch.topk(logits, top_k)
probs = F.softmax(top_k_logits, dim=-1)
next_token = top_k_indices[0][torch.multinomial(probs, 1)]
else:
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, 1)[0]
# ⬇️ Fix here: reshape next_token to (1, 1)
next_token = next_token.view(1, 1)
input_ids = torch.cat([input_ids, next_token], dim=1)
if next_token.item() == self.tokenizer.vocab["<END>"]:
break
token_ids = input_ids.squeeze(0).tolist()[1:] # skip <START>
return self.tokenizer.detokenize(token_ids)

38
tokenizer.py Normal file
View File

@ -0,0 +1,38 @@
import os
class Tokenizer:
def __init__(self, vocab_path="tokenizer_vocab.txt"):
self.vocab_path = vocab_path
self.vocab = {"<START>": 0, "<END>": 1}
self.inv_vocab = {0: "<START>", 1: "<END>"}
self.load_vocab()
def load_vocab(self):
if not os.path.exists(self.vocab_path):
return
with open(self.vocab_path, "r", encoding="utf-8") as f:
for line in f:
token, idx = line.strip().split("\t")
self.vocab[token] = int(idx)
if token not in self.vocab:
self.vocab[token] = idx
self.inv_vocab[idx] = token
self.inv_vocab = {v: k for k, v in self.vocab.items()}
def save_vocab(self):
with open(self.vocab_path, "w", encoding="utf-8") as f:
for token, idx in self.vocab.items():
f.write(f"{token}\t{idx}\n")
def tokenize(self, text):
tokens = []
for word in text.strip().split():
if word not in self.vocab:
self.vocab[word] = len(self.vocab)
self.inv_vocab[self.vocab[word]] = word
tokens.append(self.vocab[word])
self.save_vocab()
return tokens
def detokenize(self, tokens):
return " ".join(self.inv_vocab.get(t, "<UNK>") for t in tokens)