Fixed a circular import

This commit is contained in:
Dani 2025-04-25 22:49:13 -04:00
parent 84f98247ee
commit a8adc0fb37
9 changed files with 108 additions and 103 deletions

View File

@ -3,7 +3,7 @@ import asyncio
import threading import threading
from dotenv import load_dotenv from dotenv import load_dotenv
import os import os
from model.train import train_on_message from model.trainer import train_on_message
from model.brain import generate_response from model.brain import generate_response
from model.cleanup import full_cleanup from model.cleanup import full_cleanup
from model.dream_replay import replay_dreams from model.dream_replay import replay_dreams

View File

@ -1,93 +1,32 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import random import random
from model.tokenizer import Tokenizer import torch
import torch.nn.functional as F
from model.memory import save_dream from model.memory import save_dream
from model.train import train_on_message from model.brain_state import model, tokenizer, DEVICE
from model.journal import record_to_journal
recent_dreams = [] recent_dreams = []
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = Tokenizer()
VOCAB_SIZE = 10000 # Temporary cap, grows dynamically
EMBED_DIM = 128
class MultiHeadSelfAttention(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
assert embed_dim % heads == 0
self.heads = heads
self.head_dim = embed_dim // heads
self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3)
self.out = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
B, T, C = x.shape
qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim)
q, k, v = qkv.chunk(3, dim=-1)
attn_scores = (q @ k.transpose(-2, -1)) / self.scale
attn_weights = torch.softmax(attn_scores, dim=-1)
out = attn_weights @ v
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.out(out)
class TransformerBlock(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
self.attn = MultiHeadSelfAttention(embed_dim, heads)
self.norm1 = nn.LayerNorm(embed_dim)
self.ff = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
nn.ReLU(),
nn.Linear(embed_dim * 4, embed_dim)
)
self.norm2 = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ff(self.norm2(x))
return x
class TinyTransformer(nn.Module):
def __init__(self, vocab_size=VOCAB_SIZE, embed_dim=256, depth=4, heads=8):
super().__init__()
self.token_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim))
self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)])
self.norm = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
B, T = x.shape
tok = self.token_embed(x)
pos = self.pos_embed[:, :T, :]
x = tok + pos
x = self.blocks(x)
x = self.norm(x)
return self.head(x)
model = TinyTransformer().to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()
def generate_response(): def generate_response():
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE) model.eval()
output = model(seed.unsqueeze(0)) # Pick a real known word to seed from context memory
context_texts = get_recent_context(5)
if context_texts:
start = random.choice(context_texts)
seed_tokens = tokenizer.tokenize(start)
if seed_tokens:
seed = torch.tensor([seed_tokens[-1]], device=DEVICE).unsqueeze(0)
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
output = model(seed)
pred = torch.argmax(output, dim=-1).squeeze().tolist() pred = torch.argmax(output, dim=-1).squeeze().tolist()
if not isinstance(pred, list): if not isinstance(pred, list):
pred = [pred] pred = [pred]
return tokenizer.detokenize(pred) return tokenizer.detokenize(pred)
@ -118,8 +57,10 @@ def daydream():
if score > 0.45: if score > 0.45:
save_dream(sentence, score) save_dream(sentence, score)
from model.journal import record_to_journal
record_to_journal(sentence) record_to_journal(sentence)
from model.trainer import train_on_message
train_on_message(sentence) train_on_message(sentence)
recent_dreams.append((score, sentence))
if len(recent_dreams) > 10: if len(recent_dreams) > 10:
recent_dreams.pop(0) recent_dreams.pop(0)

View File

@ -0,0 +1,63 @@
import torch
import torch.nn as nn
class MultiHeadSelfAttention(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
assert embed_dim % heads == 0
self.heads = heads
self.head_dim = embed_dim // heads
self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3)
self.out = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
B, T, C = x.shape
qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim)
q, k, v = qkv.chunk(3, dim=-1)
attn_scores = (q @ k.transpose(-2, -1)) / self.scale
attn_weights = torch.softmax(attn_scores, dim=-1)
out = attn_weights @ v
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.out(out)
class TransformerBlock(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
self.attn = MultiHeadSelfAttention(embed_dim, heads)
self.norm1 = nn.LayerNorm(embed_dim)
self.ff = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
nn.ReLU(),
nn.Linear(embed_dim * 4, embed_dim)
)
self.norm2 = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ff(self.norm2(x))
return x
class TinyTransformer(nn.Module):
def __init__(self, vocab_size, embed_dim=256, depth=4, heads=8):
super().__init__()
self.token_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim))
self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)])
self.norm = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
B, T = x.shape
tok = self.token_embed(x)
pos = self.pos_embed[:, :T, :]
x = tok + pos
x = self.blocks(x)
x = self.norm(x)
return self.head(x)

13
model/brain_state.py Normal file
View File

@ -0,0 +1,13 @@
import torch
import torch.nn as nn
from model.brain_architecture import TinyTransformer
from model.tokenizer import Tokenizer
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = Tokenizer()
VOCAB_SIZE = 10000 # Expandable if needed
model = TinyTransformer(vocab_size=VOCAB_SIZE).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()

View File

@ -1,7 +1,6 @@
import random import random
import torch
from model.memory import load_dreams from model.memory import load_dreams
from model.train import train_on_message from model.trainer import train_on_message
def replay_dreams(): def replay_dreams():

View File

@ -1,6 +1,6 @@
import os import os
import time import time
from model.train import train_on_message from model.trainer import train_on_message
import random import random
JOURNAL_PATH = "data/memory/journal.txt" JOURNAL_PATH = "data/memory/journal.txt"

View File

@ -1,6 +1,6 @@
import torch import torch
from model.brain import model, tokenizer, DEVICE from model.brain import model, tokenizer, DEVICE
from model.train import train_on_message from model.trainer import train_on_message
def simulate_conversation(): def simulate_conversation():

View File

@ -1,11 +1,7 @@
import torch import torch
import torch.nn as nn
import random
import time import time
from model.brain import model, tokenizer, DEVICE, optimizer, loss_fn, daydream from model.brain_state import model, tokenizer, DEVICE, optimizer, loss_fn
from context.context import get_recent_context, add_to_context from context.context import add_to_context, get_recent_context
_last_thought = time.time()
LOSS_FILE = "data/logs/loss.log" LOSS_FILE = "data/logs/loss.log"
@ -16,7 +12,6 @@ def log_loss(value: float):
def train_on_message(text: str): def train_on_message(text: str):
global _last_thought
model.train() model.train()
context_texts = get_recent_context(3) context_texts = get_recent_context(3)
augmented_text = " ".join(context_texts + [text]) augmented_text = " ".join(context_texts + [text])
@ -30,16 +25,10 @@ def train_on_message(text: str):
output = model(input_tensor) output = model(input_tensor)
loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1)) loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1))
log_loss(loss.item())
optimizer.zero_grad() optimizer.zero_grad()
loss.backward() loss.backward()
optimizer.step() optimizer.step()
log_loss(loss.item())
add_to_context(text) add_to_context(text)
now = time.time()
if now - _last_thought > 15:
for _ in range(3):
daydream()
_last_thought = now

View File

@ -1,6 +1,6 @@
import os import os
import asyncio import asyncio
from model.train import train_on_message from model.trainer import train_on_message
from reader.filter import is_valid_line from reader.filter import is_valid_line
BOOK_DIR = "data/books" BOOK_DIR = "data/books"