Fixed a circular import
This commit is contained in:
parent
84f98247ee
commit
a8adc0fb37
2
main.py
2
main.py
@ -3,7 +3,7 @@ import asyncio
|
||||
import threading
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
from model.train import train_on_message
|
||||
from model.trainer import train_on_message
|
||||
from model.brain import generate_response
|
||||
from model.cleanup import full_cleanup
|
||||
from model.dream_replay import replay_dreams
|
||||
|
103
model/brain.py
103
model/brain.py
@ -1,93 +1,32 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import random
|
||||
from model.tokenizer import Tokenizer
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from model.memory import save_dream
|
||||
from model.train import train_on_message
|
||||
from model.journal import record_to_journal
|
||||
|
||||
from model.brain_state import model, tokenizer, DEVICE
|
||||
|
||||
recent_dreams = []
|
||||
|
||||
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
tokenizer = Tokenizer()
|
||||
VOCAB_SIZE = 10000 # Temporary cap, grows dynamically
|
||||
EMBED_DIM = 128
|
||||
|
||||
|
||||
class MultiHeadSelfAttention(nn.Module):
|
||||
def __init__(self, embed_dim, heads):
|
||||
super().__init__()
|
||||
assert embed_dim % heads == 0
|
||||
self.heads = heads
|
||||
self.head_dim = embed_dim // heads
|
||||
self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
|
||||
|
||||
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3)
|
||||
self.out = nn.Linear(embed_dim, embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.shape
|
||||
qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim)
|
||||
q, k, v = qkv.chunk(3, dim=-1)
|
||||
|
||||
attn_scores = (q @ k.transpose(-2, -1)) / self.scale
|
||||
attn_weights = torch.softmax(attn_scores, dim=-1)
|
||||
|
||||
out = attn_weights @ v
|
||||
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
||||
return self.out(out)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, embed_dim, heads):
|
||||
super().__init__()
|
||||
self.attn = MultiHeadSelfAttention(embed_dim, heads)
|
||||
self.norm1 = nn.LayerNorm(embed_dim)
|
||||
self.ff = nn.Sequential(
|
||||
nn.Linear(embed_dim, embed_dim * 4),
|
||||
nn.ReLU(),
|
||||
nn.Linear(embed_dim * 4, embed_dim)
|
||||
)
|
||||
self.norm2 = nn.LayerNorm(embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.norm1(x))
|
||||
x = x + self.ff(self.norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class TinyTransformer(nn.Module):
|
||||
def __init__(self, vocab_size=VOCAB_SIZE, embed_dim=256, depth=4, heads=8):
|
||||
super().__init__()
|
||||
self.token_embed = nn.Embedding(vocab_size, embed_dim)
|
||||
self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim))
|
||||
self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)])
|
||||
self.norm = nn.LayerNorm(embed_dim)
|
||||
self.head = nn.Linear(embed_dim, vocab_size)
|
||||
|
||||
def forward(self, x):
|
||||
B, T = x.shape
|
||||
tok = self.token_embed(x)
|
||||
pos = self.pos_embed[:, :T, :]
|
||||
x = tok + pos
|
||||
x = self.blocks(x)
|
||||
x = self.norm(x)
|
||||
return self.head(x)
|
||||
|
||||
|
||||
model = TinyTransformer().to(DEVICE)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
|
||||
def generate_response():
|
||||
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE)
|
||||
output = model(seed.unsqueeze(0))
|
||||
model.eval()
|
||||
# Pick a real known word to seed from context memory
|
||||
context_texts = get_recent_context(5)
|
||||
if context_texts:
|
||||
start = random.choice(context_texts)
|
||||
seed_tokens = tokenizer.tokenize(start)
|
||||
if seed_tokens:
|
||||
seed = torch.tensor([seed_tokens[-1]], device=DEVICE).unsqueeze(0)
|
||||
else:
|
||||
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
|
||||
else:
|
||||
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
|
||||
|
||||
output = model(seed)
|
||||
pred = torch.argmax(output, dim=-1).squeeze().tolist()
|
||||
|
||||
if not isinstance(pred, list):
|
||||
pred = [pred]
|
||||
|
||||
return tokenizer.detokenize(pred)
|
||||
|
||||
|
||||
@ -118,8 +57,10 @@ def daydream():
|
||||
|
||||
if score > 0.45:
|
||||
save_dream(sentence, score)
|
||||
from model.journal import record_to_journal
|
||||
record_to_journal(sentence)
|
||||
from model.trainer import train_on_message
|
||||
train_on_message(sentence)
|
||||
recent_dreams.append((score, sentence))
|
||||
|
||||
if len(recent_dreams) > 10:
|
||||
recent_dreams.pop(0)
|
||||
|
63
model/brain_architecture.py
Normal file
63
model/brain_architecture.py
Normal file
@ -0,0 +1,63 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class MultiHeadSelfAttention(nn.Module):
|
||||
def __init__(self, embed_dim, heads):
|
||||
super().__init__()
|
||||
assert embed_dim % heads == 0
|
||||
self.heads = heads
|
||||
self.head_dim = embed_dim // heads
|
||||
self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
|
||||
|
||||
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3)
|
||||
self.out = nn.Linear(embed_dim, embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.shape
|
||||
qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim)
|
||||
q, k, v = qkv.chunk(3, dim=-1)
|
||||
|
||||
attn_scores = (q @ k.transpose(-2, -1)) / self.scale
|
||||
attn_weights = torch.softmax(attn_scores, dim=-1)
|
||||
|
||||
out = attn_weights @ v
|
||||
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
||||
return self.out(out)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, embed_dim, heads):
|
||||
super().__init__()
|
||||
self.attn = MultiHeadSelfAttention(embed_dim, heads)
|
||||
self.norm1 = nn.LayerNorm(embed_dim)
|
||||
self.ff = nn.Sequential(
|
||||
nn.Linear(embed_dim, embed_dim * 4),
|
||||
nn.ReLU(),
|
||||
nn.Linear(embed_dim * 4, embed_dim)
|
||||
)
|
||||
self.norm2 = nn.LayerNorm(embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.norm1(x))
|
||||
x = x + self.ff(self.norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class TinyTransformer(nn.Module):
|
||||
def __init__(self, vocab_size, embed_dim=256, depth=4, heads=8):
|
||||
super().__init__()
|
||||
self.token_embed = nn.Embedding(vocab_size, embed_dim)
|
||||
self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim))
|
||||
self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)])
|
||||
self.norm = nn.LayerNorm(embed_dim)
|
||||
self.head = nn.Linear(embed_dim, vocab_size)
|
||||
|
||||
def forward(self, x):
|
||||
B, T = x.shape
|
||||
tok = self.token_embed(x)
|
||||
pos = self.pos_embed[:, :T, :]
|
||||
x = tok + pos
|
||||
x = self.blocks(x)
|
||||
x = self.norm(x)
|
||||
return self.head(x)
|
13
model/brain_state.py
Normal file
13
model/brain_state.py
Normal file
@ -0,0 +1,13 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from model.brain_architecture import TinyTransformer
|
||||
from model.tokenizer import Tokenizer
|
||||
|
||||
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
tokenizer = Tokenizer()
|
||||
VOCAB_SIZE = 10000 # Expandable if needed
|
||||
|
||||
model = TinyTransformer(vocab_size=VOCAB_SIZE).to(DEVICE)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
@ -1,7 +1,6 @@
|
||||
import random
|
||||
import torch
|
||||
from model.memory import load_dreams
|
||||
from model.train import train_on_message
|
||||
from model.trainer import train_on_message
|
||||
|
||||
|
||||
def replay_dreams():
|
||||
|
@ -1,6 +1,6 @@
|
||||
import os
|
||||
import time
|
||||
from model.train import train_on_message
|
||||
from model.trainer import train_on_message
|
||||
import random
|
||||
|
||||
JOURNAL_PATH = "data/memory/journal.txt"
|
||||
|
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from model.brain import model, tokenizer, DEVICE
|
||||
from model.train import train_on_message
|
||||
from model.trainer import train_on_message
|
||||
|
||||
|
||||
def simulate_conversation():
|
||||
|
@ -1,11 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import random
|
||||
import time
|
||||
from model.brain import model, tokenizer, DEVICE, optimizer, loss_fn, daydream
|
||||
from context.context import get_recent_context, add_to_context
|
||||
|
||||
_last_thought = time.time()
|
||||
from model.brain_state import model, tokenizer, DEVICE, optimizer, loss_fn
|
||||
from context.context import add_to_context, get_recent_context
|
||||
|
||||
LOSS_FILE = "data/logs/loss.log"
|
||||
|
||||
@ -16,7 +12,6 @@ def log_loss(value: float):
|
||||
|
||||
|
||||
def train_on_message(text: str):
|
||||
global _last_thought
|
||||
model.train()
|
||||
context_texts = get_recent_context(3)
|
||||
augmented_text = " ".join(context_texts + [text])
|
||||
@ -30,16 +25,10 @@ def train_on_message(text: str):
|
||||
|
||||
output = model(input_tensor)
|
||||
loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1))
|
||||
log_loss(loss.item())
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
log_loss(loss.item())
|
||||
add_to_context(text)
|
||||
|
||||
now = time.time()
|
||||
if now - _last_thought > 15:
|
||||
for _ in range(3):
|
||||
daydream()
|
||||
_last_thought = now
|
@ -1,6 +1,6 @@
|
||||
import os
|
||||
import asyncio
|
||||
from model.train import train_on_message
|
||||
from model.trainer import train_on_message
|
||||
from reader.filter import is_valid_line
|
||||
|
||||
BOOK_DIR = "data/books"
|
||||
|
Loading…
x
Reference in New Issue
Block a user