Added a clean up

This commit is contained in:
Dani 2025-04-25 12:45:30 -04:00
parent 67c9e63fa3
commit ae546a60a1
3 changed files with 146 additions and 9 deletions

10
main.py
View File

@ -5,6 +5,8 @@ from dotenv import load_dotenv
import os
from model.train import train_on_message
from model.brain import generate_response
from model.cleanup import full_cleanup
from reader.reader import read_books_forever
from dashboard.dashboard import run_dashboard
load_dotenv()
@ -35,8 +37,16 @@ async def on_message(message):
# Launch Flask in background
threading.Thread(target=run_dashboard, daemon=True).start()
async def background_cleanup_loop():
while True:
full_cleanup()
await asyncio.sleep(300) # 5 minutes
loop = asyncio.get_event_loop()
loop.create_task(read_books_forever()) # Book reader task
loop.create_task(background_cleanup_loop())
# Launch Discord bot (blocking)
client.run(TOKEN)

View File

@ -4,7 +4,7 @@ import random
from model.tokenizer import Tokenizer
import torch.nn.functional as F
from model.memory import save_dream
import time
recent_dreams = []
@ -14,17 +14,65 @@ VOCAB_SIZE = 10000 # Temporary cap, grows dynamically
EMBED_DIM = 128
class TinyTransformer(nn.Module):
def __init__(self):
class MultiHeadSelfAttention(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
self.embed = nn.Embedding(VOCAB_SIZE, EMBED_DIM)
self.ln1 = nn.LayerNorm(EMBED_DIM)
self.fc = nn.Linear(EMBED_DIM, VOCAB_SIZE)
assert embed_dim % heads == 0
self.heads = heads
self.head_dim = embed_dim // heads
self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3)
self.out = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
x = self.embed(x)
x = self.ln1(x)
return self.fc(x)
B, T, C = x.shape
qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim)
q, k, v = qkv.chunk(3, dim=-1)
attn_scores = (q @ k.transpose(-2, -1)) / self.scale
attn_weights = torch.softmax(attn_scores, dim=-1)
out = attn_weights @ v
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.out(out)
class TransformerBlock(nn.Module):
def __init__(self, embed_dim, heads):
super().__init__()
self.attn = MultiHeadSelfAttention(embed_dim, heads)
self.norm1 = nn.LayerNorm(embed_dim)
self.ff = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
nn.ReLU(),
nn.Linear(embed_dim * 4, embed_dim)
)
self.norm2 = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ff(self.norm2(x))
return x
class TinyTransformer(nn.Module):
def __init__(self, vocab_size=VOCAB_SIZE, embed_dim=EMBED_DIM, depth=2, heads=4):
super().__init__()
self.token_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim)) # max sequence length = 128
self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)])
self.norm = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
B, T = x.shape
tok = self.token_embed(x)
pos = self.pos_embed[:, :T, :]
x = tok + pos
x = self.blocks(x)
x = self.norm(x)
return self.head(x)
model = TinyTransformer().to(DEVICE)

79
model/cleanup.py Normal file
View File

@ -0,0 +1,79 @@
import re
import json
import os
import time
from model.tokenizer import VOCAB_PATH
from model.memory import DREAM_LOG_PATH
from context.context import CONTEXT_FILE
CLEANUP_LOG = "data/logs/cleanup.log"
def log(msg):
os.makedirs(os.path.dirname(CLEANUP_LOG), exist_ok=True)
with open(CLEANUP_LOG, "a", encoding="utf-8") as f:
f.write(f"{time.strftime('%Y-%m-%d %H:%M:%S')} | {msg}\n")
def cleanup_vocab():
if not os.path.exists(VOCAB_PATH):
return
with open(VOCAB_PATH, "r", encoding="utf-8") as f:
vocab = json.load(f)
removed = []
for word in list(vocab.keys()):
if re.search(r"[^\w-]", word):
removed.append(word)
del vocab[word]
elif len(word) <= 2 and not word.isalpha():
removed.append(word)
del vocab[word]
elif "<EFBFBD>" in word or "\ufffd" in word:
removed.append(word)
del vocab[word]
with open(VOCAB_PATH, "w", encoding="utf-8") as f:
json.dump(vocab, f, indent=2)
if removed:
log(f"Removed {len(removed)} malformed tokens: {removed[:5]}...")
def cleanup_dreams():
if not os.path.exists(DREAM_LOG_PATH):
return
with open(DREAM_LOG_PATH, "r", encoding="utf-8") as f:
dreams = json.load(f)
filtered = [d for d in dreams if d["score"] >= 0.3][:100]
with open(DREAM_LOG_PATH, "w", encoding="utf-8") as f:
json.dump(filtered, f, indent=2)
if len(filtered) < len(dreams):
log(f"Removed {len(dreams) - len(filtered)} low-score dreams")
def cleanup_context():
if not os.path.exists(CONTEXT_FILE):
return
with open(CONTEXT_FILE, "r", encoding="utf-8") as f:
context = json.load(f)
filtered = context[-100:]
with open(CONTEXT_FILE, "w", encoding="utf-8") as f:
json.dump(filtered, f, indent=2)
if len(filtered) < len(context):
log(f"Trimmed context memory from {len(context)}{len(filtered)}")
def full_cleanup():
cleanup_vocab()
cleanup_dreams()
cleanup_context()