Compare commits
2 Commits
7d1f2ac3fa
...
ba126bbce3
Author | SHA1 | Date | |
---|---|---|---|
ba126bbce3 | |||
6eb63097fa |
3
.gitignore
vendored
3
.gitignore
vendored
@ -169,4 +169,5 @@ cython_debug/
|
||||
#.idea/
|
||||
|
||||
/tokenizer_vocab.txt
|
||||
/logs/core_dreams.txt
|
||||
/logs/core_dreams.txt
|
||||
/logs/best_dream.txt
|
13
dashboard.py
13
dashboard.py
@ -12,6 +12,13 @@ def tail(filepath, num_lines=10):
|
||||
return f.readlines()[-num_lines:]
|
||||
|
||||
|
||||
def get_best_dream():
|
||||
if not os.path.exists("logs/best_dream.txt"):
|
||||
return "No high-scoring dream yet."
|
||||
with open("logs/best_dream.txt", encoding="utf-8") as f:
|
||||
return f.read().strip()
|
||||
|
||||
|
||||
@app.route("/")
|
||||
def home():
|
||||
vocab_size = 0
|
||||
@ -22,6 +29,7 @@ def home():
|
||||
dreams = [line.strip() for line in tail("logs/dreams.log", 10)]
|
||||
messages = [line.strip() for line in tail("logs/messages.log", 10)]
|
||||
errors = [line.strip() for line in tail("logs/error.log", 15)]
|
||||
best_dream = get_best_dream()
|
||||
|
||||
return render_template_string("""
|
||||
<!DOCTYPE html>
|
||||
@ -39,6 +47,8 @@ def home():
|
||||
<body>
|
||||
<h1>🌸 Ruby's Dashboard</h1>
|
||||
<p><b>Vocabulary Size:</b> {{ vocab_size }}</p>
|
||||
<h3>🏆 Highest Scoring Dream</h3>
|
||||
<p><b>{{ best_dream }}</b></p>
|
||||
|
||||
<h3>🧠 Recent Daydreams</h3>
|
||||
<ul>
|
||||
@ -60,9 +70,10 @@ def home():
|
||||
{{ err }}
|
||||
{% endfor %}
|
||||
</pre>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
""", dreams=dreams[::-1], messages=messages[::-1], errors=errors[::-1], vocab_size=vocab_size)
|
||||
""", best_dream=best_dream, dreams=dreams[::-1], messages=messages[::-1], errors=errors[::-1], vocab_size=vocab_size)
|
||||
|
||||
|
||||
def start_dashboard():
|
||||
|
@ -1,5 +1,6 @@
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class RubyState:
|
||||
def __init__(self):
|
||||
self.last_message_time = datetime.utcnow()
|
||||
|
10
trainer.py
10
trainer.py
@ -19,6 +19,7 @@ class RubyTrainer:
|
||||
self.criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
self.rebuild_model_if_needed()
|
||||
self.best_dream = ("", 0.0)
|
||||
|
||||
def rebuild_model_if_needed(self):
|
||||
vocab_size = len(self.tokenizer.vocab)
|
||||
@ -156,7 +157,8 @@ class RubyTrainer:
|
||||
|
||||
score_raw = self.score_sentence(raw)
|
||||
score_re = self.score_sentence(rephrased)
|
||||
|
||||
if score_re >= self.best_dream[1]:
|
||||
self.best_dream = (rephrased.strip(), score_re)
|
||||
final = rephrased if score_re >= score_raw else raw
|
||||
|
||||
self.train_on_tokens_from_text(final)
|
||||
@ -182,6 +184,8 @@ class RubyTrainer:
|
||||
f.write(f"{datetime.utcnow().isoformat()} | Ruby | {t}\n")
|
||||
|
||||
print(f"[DAYDREAM] Complete. {len(thoughts)} thoughts imagined.")
|
||||
with open("logs/best_dream.txt", "w", encoding="utf-8") as f:
|
||||
f.write(f"{self.best_dream[1]:.2f} | {self.best_dream[0]}\n")
|
||||
|
||||
if say_thought and thoughts:
|
||||
return thoughts[-1]
|
||||
@ -246,4 +250,8 @@ class RubyTrainer:
|
||||
if len(set(words)) > len(words) * 0.75:
|
||||
score += 1 # diversity bonus
|
||||
|
||||
word_counts = {w: words.count(w) for w in set(words)}
|
||||
if any(count >= 3 for count in word_counts.values()):
|
||||
score -= 1 # repetition penalty
|
||||
|
||||
return score # max 5.0
|
||||
|
Loading…
x
Reference in New Issue
Block a user