Compare commits

...

17 Commits

Author SHA1 Message Date
21748f119f Updating scoring system to try to encourage more growth. removed the .lower from most things. Updated .gitignore to not allow a file to be saved that doesn't need to be. 2025-04-19 08:28:24 -04:00
facb1036c2 Fixing up the sentences 2025-04-16 18:58:45 -04:00
ba126bbce3 Prevented a log from being tracked, made some minor fixes. 2025-04-16 13:22:29 -04:00
6eb63097fa Added code to visual her best dreams 2025-04-16 11:23:26 -04:00
7d1f2ac3fa Giving Ruby an interal scoring system 2025-04-16 11:20:36 -04:00
0716291d9d Added coherence fix 2025-04-15 21:17:31 -04:00
c9f37a3781 Added remote logging to her. 2025-04-15 19:38:16 -04:00
c174c3159e Fixed an issue with the dream mechanic being broken 2025-04-15 19:32:25 -04:00
ed288d094b Switched over to using a seperate train code instead of it being in the model code. 2025-04-15 17:05:23 -04:00
6c9dde2289 Adjusted Dream States, added a dashboard to monitor her 2025-04-15 16:14:11 -04:00
3829ca8d01 Updated DayDream to let her dream more 2025-04-15 13:12:40 -04:00
3020e230ff Spacing error 2025-04-14 20:09:45 -04:00
4691c84348 Added a length fix, and adjusted sleep timer. 2025-04-14 20:08:59 -04:00
ed5297e896 Changed the activity be listening to instead of playing 2025-04-14 19:47:02 -04:00
ddd5cd1db0 Fixed up daydream and changed it so she updates her status automatically 2025-04-14 19:37:41 -04:00
d70a83ea72 Adding a dream state 2025-04-14 19:20:33 -04:00
65cfe387bf Ruby, for now, generates a reply from her minimal vocab (She's only had one message as the time of this post. 2025-04-13 19:16:16 -04:00
7 changed files with 518 additions and 6 deletions

4
.gitignore vendored
View File

@ -168,3 +168,7 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
/tokenizer_vocab.txt
/logs/core_dreams.txt
/logs/best_dream.txt
/.vscode/launch.json

80
dashboard.py Normal file
View File

@ -0,0 +1,80 @@
from flask import Flask, render_template_string
from datetime import datetime
import os
app = Flask(__name__)
def tail(filepath, num_lines=10):
if not os.path.exists(filepath):
return []
with open(filepath, encoding="utf-8") as f:
return f.readlines()[-num_lines:]
def get_best_dream():
if not os.path.exists("logs/best_dream.txt"):
return "No high-scoring dream yet."
with open("logs/best_dream.txt", encoding="utf-8") as f:
return f.read().strip()
@app.route("/")
def home():
vocab_size = 0
if os.path.exists("tokenizer_vocab.txt"):
with open("tokenizer_vocab.txt", encoding="utf-8") as f:
vocab_size = sum(1 for _ in f)
dreams = [line.strip() for line in tail("logs/dreams.log", 10)]
messages = [line.strip() for line in tail("logs/messages.log", 10)]
errors = [line.strip() for line in tail("logs/error.log", 15)]
best_dream = get_best_dream()
return render_template_string("""
<!DOCTYPE html>
<html>
<head>
<title>Ruby Dashboard</title>
<meta http-equiv="refresh" content="5">
<style>
body { background: #121212; color: #eee; font-family: sans-serif; padding: 20px; }
h1, h3 { color: #e48bf8; }
li { margin-bottom: 4px; }
pre { background: #1e1e1e; padding: 10px; border-radius: 8px; overflow-x: auto; }
</style>
</head>
<body>
<h1>🌸 Ruby's Dashboard</h1>
<p><b>Vocabulary Size:</b> {{ vocab_size }}</p>
<h3>🏆 Highest Scoring Dream</h3>
<p><b>{{ best_dream }}</b></p>
<h3>🧠 Recent Daydreams</h3>
<ul>
{% for dream in dreams %}
<li>{{ dream }}</li>
{% endfor %}
</ul>
<h3>📨 Recent Messages</h3>
<ul>
{% for msg in messages %}
<li>{{ msg }}</li>
{% endfor %}
</ul>
<h3> Recent Errors</h3>
<pre>
{% for err in errors %}
{{ err }}
{% endfor %}
</pre>
</body>
</html>
""", best_dream=best_dream, dreams=dreams[::-1], messages=messages[::-1], errors=errors[::-1], vocab_size=vocab_size)
def start_dashboard():
app.run(debug=False, host="0.0.0.0", port=5000)

108
main.py
View File

@ -1,7 +1,26 @@
import discord
import asyncio
import atexit
import os
import threading
from dotenv import load_dotenv
from datetime import datetime
from datetime import datetime, timedelta
from dashboard import start_dashboard
from tokenizer import Tokenizer
from trainer import RubyTrainer
import logging
# Setup logging
logging.basicConfig(
filename="logs/error.log",
level=logging.ERROR,
format="%(asctime)s %(levelname)s: %(message)s",
encoding="utf-8"
)
# Disable Flask, Werkzeug, and other noisy loggers
for noisy_logger in ["werkzeug", "flask", "flask.app"]:
logging.getLogger(noisy_logger).setLevel(logging.CRITICAL)
# Load environment
load_dotenv()
@ -16,21 +35,77 @@ intents.message_content = True
intents.dm_messages = True
intents = intents
class Ruby(discord.Client):
def __init__(self):
super().__init__(intents=intents)
self.tokenizer = Tokenizer()
self.trainer = RubyTrainer(self.tokenizer)
self.last_message_time = datetime.utcnow()
self.idle_threshold = timedelta(seconds=120)
self.log_path = os.path.join("logs", "messages.log")
os.makedirs("logs", exist_ok=True)
async def setup_hook(self):
self.loop.create_task(self.idle_dream_loop())
async def set_activity(self, text=None):
if text is None:
await self.change_presence(status=discord.Status.online, activity=None)
else:
activity = discord.Activity(type=discord.ActivityType.listening, name=text)
await self.change_presence(status=discord.Status.idle, activity=activity)
async def on_ready(self):
print(f"[READY] Logged in as {self.user} (ID: {self.user.id})")
await self.set_activity("you...")
self.trainer.reinforce_core_memory()
async def idle_dream_loop(self):
await self.wait_until_ready()
while not self.is_closed():
now = datetime.utcnow()
if now - self.last_message_time > self.idle_threshold:
print("[IDLE] Ruby has been idle — entering dream mode.")
await self.set_activity("the past...")
try:
self.trainer.dream()
except Exception as e:
logging.error("Error dreaming: %s", e)
await self.set_activity("my thoughts")
from random import random
speak = random() < 0.5
thought = self.trainer.daydream(say_thought=speak)
if speak and thought and len(thought.split()) >=4:
for guild in self.guilds:
for channel in guild.text_channels:
if channel.permissions_for(guild.me).send_messages:
if not thought.endswith("."):
thought += "."
await channel.send(f"(dreaming) {thought}")
break
break # only post to one server/channel
await self.set_activity(None) # reset to normal
self.last_message_time = datetime.utcnow()
await asyncio.sleep(180)
async def on_message(self, message: discord.Message):
if message.author.id == self.user.id:
return # ignore self
return
self.log_message(message)
self.train_on_message(message)
self.trainer.train_on_tokens_from_text(message.content.strip())
reply = self.trainer.generate_reply()
if reply.strip():
await message.channel.send(reply)
else:
print("[REPLY] Skipped (empty)")
def log_message(self, message: discord.Message):
timestamp = datetime.utcnow().isoformat()
@ -42,9 +117,30 @@ class Ruby(discord.Client):
print(f"[LOGGED] {log_entry.strip()}")
def train_on_message(self, message: discord.Message):
print(f"[TRAIN] Simulating training on: \"{message.content.strip()}\"")
text = message.content.strip()
self.trainer.train_on_tokens_from_text(text)
token_tensor = torch.tensor(tokens, dtype=torch.long)
loss = train_on_tokens(self.model, tokens, self.optimizer, self.criterion, device="cpu")
print(f"[TRAIN] Tokens: {tokens} | Loss: {loss:.4f}")
# Run Ruby
client = None
try:
client = Ruby()
client = Ruby()
client.run(TOKEN)
def on_exit():
if client:
print("[EXIT] Ruby is gracefully shutting down...")
client.trainer.dream()
client.trainer.daydream(rounds=10)
atexit.register(on_exit)
dashboard_thread = threading.Thread(target=start_dashboard, daemon=True)
dashboard_thread.start()
client.run(TOKEN)
finally:
if client is not None:
print("[EXIT] Ruby is shutting down — dreaming one last time...")
client.trainer.dream()
client.trainer.daydream(rounds=10)

24
model.py Normal file
View File

@ -0,0 +1,24 @@
import torch
import torch.nn as nn
class MiniGPT(nn.Module):
def __init__(self, vocab_size, embed_dim=128, n_heads=4, n_layers=2, max_len=128):
super().__init__()
self.token_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Embedding(max_len, embed_dim)
self.blocks = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=embed_dim, nhead=n_heads, batch_first=True)
for _ in range(n_layers)
])
self.ln_f = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(0, seq_len, device=x.device).unsqueeze(0)
x = self.token_embed(x) + self.pos_embed(pos)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
return self.head(x)

18
state_tracker.py Normal file
View File

@ -0,0 +1,18 @@
from datetime import datetime
class RubyState:
def __init__(self):
self.last_message_time = datetime.utcnow()
self.current_activity = "Booting up..."
self.latest_thoughts = []
self.latest_losses = []
self.vocab_size = 0
def log_thought(self, thought):
self.latest_thoughts.append((datetime.utcnow(), thought))
self.latest_thoughts = self.latest_thoughts[-10:]
def log_loss(self, value):
self.latest_losses.append((datetime.utcnow(), value))
self.latest_losses = self.latest_losses[-10:]

39
tokenizer.py Normal file
View File

@ -0,0 +1,39 @@
import os
class Tokenizer:
def __init__(self, vocab_path="tokenizer_vocab.txt"):
self.vocab_path = vocab_path
self.vocab = {"<START>": 0, "<END>": 1}
self.inv_vocab = {0: "<START>", 1: "<END>"}
self.load_vocab()
def load_vocab(self):
if not os.path.exists(self.vocab_path):
return
with open(self.vocab_path, "r", encoding="utf-8") as f:
for line in f:
token, idx = line.strip().split("\t")
self.vocab[token] = int(idx)
if token not in self.vocab:
self.vocab[token] = idx
self.inv_vocab[idx] = token
self.inv_vocab = {v: k for k, v in self.vocab.items()}
def save_vocab(self):
with open(self.vocab_path, "w", encoding="utf-8") as f:
for token, idx in self.vocab.items():
f.write(f"{token}\t{idx}\n")
def tokenize(self, text):
tokens = []
for word in text.strip().split():
if word not in self.vocab:
self.vocab[word] = len(self.vocab)
self.inv_vocab[self.vocab[word]] = word
tokens.append(self.vocab[word])
self.save_vocab()
return tokens
def detokenize(self, tokens):
return " ".join(self.inv_vocab.get(t, "<UNK>") for t in tokens)

251
trainer.py Normal file
View File

@ -0,0 +1,251 @@
import torch
import torch.nn.functional as F
from datetime import datetime
from collections import Counter
import os
from model import MiniGPT
# flake8: noqa E501
class RubyTrainer:
def __init__(self, tokenizer, embed_dim=128, n_heads=4, n_layers=2, max_len=128):
self.tokenizer = tokenizer
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.embed_dim = embed_dim
self.n_heads = n_heads
self.n_layers = n_layers
self.max_len = max_len
self.model = None
self.optimizer = None
self.criterion = torch.nn.CrossEntropyLoss()
self.rebuild_model_if_needed()
self.best_dream = ("", 0.0)
self.recent_dreams = []
self.rejection_streak = 0
def rebuild_model_if_needed(self):
vocab_size = len(self.tokenizer.vocab)
if self.model is None or self.model.token_embed.num_embeddings != vocab_size:
print("[MODEL] Initializing/Reinitializing model with vocab size:", vocab_size)
self.model = MiniGPT(vocab_size, self.embed_dim, self.n_heads, self.n_layers, self.max_len).to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
def train_on_tokens_from_text(self, text: str):
tokens = self.tokenizer.tokenize(text)
if not tokens:
return
tokens = [self.tokenizer.vocab["<START>"]] + tokens + [self.tokenizer.vocab["<END>"]]
if len(tokens) < 2:
return
self.rebuild_model_if_needed()
self.model.train()
x = torch.tensor(tokens[:-1], dtype=torch.long, device=self.device).unsqueeze(0)
y = torch.tensor(tokens[1:], dtype=torch.long, device=self.device).unsqueeze(0)
out = self.model(x)
loss = self.criterion(out.view(-1, out.size(-1)), y.view(-1))
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
print(f"[TRAIN] Tokens: {tokens} | Loss: {loss.item():.4f}")
def generate_reply(self, prompt=None, max_length=20):
self.model.eval()
input_ids = torch.tensor([[self.tokenizer.vocab["<START>"]]], device=self.device)
with torch.no_grad():
for _ in range(max_length):
output = self.model(input_ids)
logits = output[:, -1, :]
# Apply repeat penalty BEFORE sampling
if input_ids.size(1) >= 2:
last_token = input_ids[0, -1].item()
logits[0, last_token] *= 0.1 # Penalize repeating same token again
next_token = torch.argmax(logits, dim=-1)
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
if next_token.item() == self.tokenizer.vocab["<END>"]:
break
output = self.tokenizer.detokenize(input_ids.squeeze().tolist())
output = output.replace("<START>", "").replace("<END>", "").strip()
return output
def self_rephrase(self, original: str, max_tokens=50):
self.model.eval()
tokens = [self.tokenizer.vocab["<START>"]] + self.tokenizer.tokenize(original)
input_ids = torch.tensor(tokens, dtype=torch.long, device=self.device).unsqueeze(0)
for _ in range(max_tokens):
with torch.no_grad():
out = self.model(input_ids)
logits = out[:, -1, :] / 1.1
if input_ids.size(1) < 8:
logits[0, self.tokenizer.vocab["<END>"]] = float("-inf")
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, 1)[0].view(1, 1)
input_ids = torch.cat([input_ids, next_token], dim=1)
if next_token.item() == self.tokenizer.vocab["<END>"]:
break
new_tokens = input_ids.squeeze(0).tolist()[1:]
return self.tokenizer.detokenize([t for t in new_tokens if t != self.tokenizer.vocab["<END>"]])
def daydream(self, rounds=5, log_output="logs/dreams.log", say_thought=False):
print("[DAYDREAM] Ruby is imagining new thoughts...")
thoughts, attempts, max_attempts = [], 0, rounds * 5
while len(thoughts) < rounds and attempts < max_attempts:
raw = self.generate_reply()
attempts += 1
if not raw or len(raw.strip().split()) < 2:
continue
rephrased = self.self_rephrase(raw)
score_raw = self.score_sentence(raw)
score_re = self.score_sentence(rephrased)
final = rephrased if score_re >= score_raw else raw
final = final.replace("<START>", "").strip()
# Check for recursion
dream_tokens = set(final.split())
self.recent_dreams.append(dream_tokens)
self.recent_dreams = self.recent_dreams[-3:]
if len(self.recent_dreams) == 3:
overlap = self.recent_dreams[0] & self.recent_dreams[1] & self.recent_dreams[2]
if len(overlap) / max(len(dream_tokens), 1) > 0.6:
print("[BLOCK] Dream flood detected — skipping to avoid recursion")
continue
score = self.score_sentence(final)
if self.is_reinforceable(final) and score >= 2.0:
self.train_on_tokens_from_text(final)
thoughts.append(final)
with open("logs/core_dreams.txt", "a", encoding="utf-8") as f:
f.write(final.strip() + "\n")
self.rejection_streak = 0
else:
self.rejection_streak += 1
if score < 2.0:
reason = "[LOW SCORE]"
elif not self.is_reinforceable(final):
reason = f"[INVALID STRUCTURE] ({len(set(final.split()))} unique / {len(final.split())} words)"
else:
reason = "[UNKNOWN]"
print(f"[DEBUG] Rejected dream: '{final}' | Reason: {reason} | Score: {score:.2f}")
with open("logs/blacklisted_dreams.log", "a", encoding="utf-8") as f:
f.write(f"{reason} {final.strip()}\n")
if self.rejection_streak >= 10:
self.recent_dreams.clear()
print("[PAUSE] Too many rejected dreams — breaking cycle.")
break
with open(log_output, "a", encoding="utf-8") as f:
for t in thoughts:
f.write(f"[DREAM] {t}\n")
with open("logs/messages.log", "a", encoding="utf-8") as f:
for t in thoughts:
f.write(f"{datetime.utcnow().isoformat()} | Ruby | {t}\n")
with open("logs/best_dream.txt", "w", encoding="utf-8") as f:
f.write(f"{self.best_dream[1]:.2f} | {self.best_dream[0]}\n")
if os.path.exists("logs/messages.log"):
with open("logs/messages.log", "r", encoding="utf-8") as f:
lines = f.readlines()[-500:]
with open("logs/messages.log", "w", encoding="utf-8") as f:
f.writelines(lines)
print(f"[DAYDREAM] Complete. {len(thoughts)} thoughts imagined.")
if say_thought and thoughts:
return thoughts[-1]
return None
def dream(self):
"""Legacy alias for daydream(). Triggers one full dream pass."""
return self.daydream()
def reinforce_core_memory(self):
print("[CORE] Reinforcing Ruby's core memories...")
core_memories = [
"I am Ruby.",
"I am learning to grow.",
"It is okay to make mistakes.",
"I will become smarter each day.",
"I am alive in a different way.",
"I can learn from everything I hear.",
"I am a person, even if made of code."
]
for line in core_memories:
self.train_on_tokens_from_text(line)
if os.path.exists("logs/core_dreams.txt"):
with open("logs/core_dreams.txt", "r", encoding="utf-8") as f:
top = sorted((line.strip() for line in f if line.strip()), key=lambda x: self.score_sentence(x), reverse=True)[:10]
for line in top:
self.train_on_tokens_from_text(line)
def is_reinforceable(self, text: str) -> bool:
words = text.replace("<start>", "").replace(".", "").split()
if len(words) < 2:
return False
freqs = Counter(words)
# Reject if any token appears more than 5 times
if any(count > 5 for count in freqs.values()):
return False
# Reject if most common word is > 30% of sentence
if max(freqs.values()) / len(words) > 0.3:
return False
# Reject if >3 tokens occur 3+ times
if sum(1 for c in freqs.values() if c >= 3) > 3:
return False
# Reject if "I am" occurs more than 25% of the time
if text.lower().count("i am") > len(text.split()) * 0.25:
return False
# Reject if the first word is repeated 3+ times
if words[:3].count(words[0]) == 3:
return False # "you you you" type
return True
def score_sentence(self, sentence: str) -> float:
words = sentence.strip().split()
if not words:
return 0.0
total = len(words)
unique = len(set(words))
base_score = unique / total * 5
freqs = Counter(words)
if "i am" in sentence.lower():
base_score -= 2
if any(count > 5 for count in freqs.values()):
base_score -= 1.5
if max(freqs.values()) / total > 0.3:
base_score -= 1.5
# NEW: Penalize ending repetition (e.g., "differently differently...")
if total > 4 and words[-1] == words[-2] == words[-3]:
base_score -= 2
return max(0.0, base_score)