import torch import time from model.dynamic_expand import expand_model_if_needed, _last_expansion_time, get_optimizer, expand_lock from model.brain_state import model, tokenizer, DEVICE, loss_fn from model.brainmap import update_brainmap from context.context import add_to_context, get_recent_context LOSS_FILE = "data/logs/loss.log" VOCAB_GROWTH_FILE = "data/logs/vocab_growth.log" scheduler = torch.optim.lr_scheduler.StepLR(get_optimizer(), step_size=500, gamma=0.95) def log_vocab_growth(): with open(VOCAB_GROWTH_FILE, "a", encoding="utf-8") as f: f.write(f"{time.time()},{len(tokenizer.vocab)}\n") def log_loss(value: float): with open(LOSS_FILE, "a", encoding="utf-8") as f: f.write(f"{time.time()},{round(value, 4)}\n") def train_on_message(text: str, source: str = "user"): expand_model_if_needed() now = time.time() if now - _last_expansion_time < 5: print("[Train] Skipping to stabilize after expansion.") return if not expand_lock.acquire(timeout=0.5): print("[Train] Skipped training due to active expansion.") return try: model.train() context_texts = get_recent_context(10) augmented_text = " " + " ".join(context_texts + [text]) + " " tokens = tokenizer.tokenize(augmented_text) if len(tokens) < 2: return max_token_id = model.head.out_features - 1 tokens = [t if t <= max_token_id else max_token_id for t in tokens] tokens = tokens[:128] if len(tokens) < 2: return input_tensor = torch.tensor(tokens[:-1], dtype=torch.long, device=DEVICE).unsqueeze(0) target_tensor = torch.tensor(tokens[1:], dtype=torch.long, device=DEVICE).unsqueeze(0) opt = get_optimizer() output = model(input_tensor) loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1)) if torch.isnan(loss): print("[Trainer] Detected NaN loss, skipping update.") return opt.zero_grad() loss.backward() opt.step() scheduler.step() log_loss(loss.item()) log_vocab_growth() add_to_context(text, source=source) update_brainmap(augmented_text.split()) finally: expand_lock.release()