import torch import torch.nn as nn class Brain(nn.Module): """ Minimal Transformer-based autoregressive model. """ def __init__( self, vocab_size: int, d_model: int = 256, nhead: int = 4, num_layers: int = 2, dim_feedforward: int = 512, max_seq_len: int = 128, ): super().__init__() self.token_emb = nn.Embedding(vocab_size, d_model) self.pos_emb = nn.Parameter(torch.zeros(1, max_seq_len, d_model)) encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, batch_first=True, ) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers) self.fc_out = nn.Linear(d_model, vocab_size) self.max_seq_len = max_seq_len def forward(self, x: torch.Tensor) -> torch.Tensor: seq_len = x.size(1) x = self.token_emb(x) + self.pos_emb[:, :seq_len, :] x = self.transformer(x) return self.fc_out(x)