import torch import torch.nn as nn import torch.nn.functional as F import math class GPTConfig: """Configuration for our GPT model.""" def __init__( self, vocab_size: int, block_size: int, n_layer: int = 8, n_head: int = 8, n_embd: int = 512, ): self.vocab_size = vocab_size self.block_size = block_size self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd class CausalSelfAttention(nn.Module): """A single multi-head causal self-attention layer.""" def __init__(self, config: GPTConfig): super().__init__() assert config.n_embd % config.n_head == 0 self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) self.proj = nn.Linear(config.n_embd, config.n_embd) self.n_head = config.n_head self.head_dim = config.n_embd // config.n_head # causal mask, buffer not a parameter mask = torch.tril(torch.ones(config.block_size, config.block_size)) self.register_buffer("mask", mask) def forward(self, x): B, T, C = x.size() k = self.key(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2) q = self.query(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2) # compute attention scores att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) att = att.masked_fill(self.mask[:T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) v = self.value(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2) out = att @ v out = out.transpose(1, 2).contiguous().view(B, T, C) return self.proj(out) class MLP(nn.Module): """Feed-forward layer.""" def __init__(self, config: GPTConfig): super().__init__() self.fc1 = nn.Linear(config.n_embd, 4 * config.n_embd) self.fc2 = nn.Linear(4 * config.n_embd, config.n_embd) def forward(self, x): return self.fc2(F.gelu(self.fc1(x))) class Block(nn.Module): """Transformer block: attention + feed-forward.""" def __init__(self, config: GPTConfig): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class GPT(nn.Module): """GPT language model from scratch.""" def __init__(self, config: GPTConfig): super().__init__() self.token_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size def forward(self, idx, targets=None): B, T = idx.size() tok_emb = self.token_emb(idx) # (B,T,C) pos_emb = self.pos_emb[:, :T, :] # (1,T,C) x = tok_emb + pos_emb for block in self.blocks: x = block(x) x = self.ln_f(x) logits = self.head(x) # (B,T,vocab) loss = None if targets is not None: # shift logits and targets for next-token prediction logits = logits.view(B * T, -1) targets = targets.view(B * T) loss = F.cross_entropy(logits, targets) return logits, loss @torch.no_grad() def generate( self, idx, max_new_tokens: int, temperature: float = 1.0, top_k: int = None ): """ Iteratively predict next token and append to sequence. - idx is (B,T) starting context. - Returns (B, T+max_new_tokens). """ for _ in range(max_new_tokens): idx_cond = idx[:, -self.block_size :] logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, top_k) logits[logits < v[:, [-1]]] = -float('Inf') probs = F.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) idx = torch.cat([idx, next_token], dim=1) return idx