import torch import torch.nn as nn import random from model.tokenizer import Tokenizer DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = Tokenizer() VOCAB_SIZE = 10000 # Temporary cap, grows dynamically EMBED_DIM = 128 class TinyTransformer(nn.Module): def __init__(self): super().__init__() self.embed = nn.Embedding(VOCAB_SIZE, EMBED_DIM) self.ln1 = nn.LayerNorm(EMBED_DIM) self.fc = nn.Linear(EMBED_DIM, VOCAB_SIZE) def forward(self, x): x = self.embed(x) x = self.ln1(x) return self.fc(x) model = TinyTransformer().to(DEVICE) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = nn.CrossEntropyLoss() def generate_response(): seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE) output = model(seed.unsqueeze(0)) pred = torch.argmax(output, dim=-1).squeeze().tolist() if not isinstance(pred, list): pred = [pred] return tokenizer.detokenize(pred)