import torch from model.brain import model, optimizer, loss_fn, tokenizer, DEVICE def train_on_message(text: str): model.train() tokens = tokenizer.tokenize(text) if len(tokens) < 2: return input_tensor = torch.tensor(tokens[:-1], dtype=torch.long, device=DEVICE).unsqueeze(0) target_tensor = torch.tensor(tokens[1:], dtype=torch.long, device=DEVICE).unsqueeze(0) output = model(input_tensor) loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1)) optimizer.zero_grad() loss.backward() optimizer.step()