import random import torch import torch.nn.functional as F from model.memory import save_dream from model.brain_state import model, tokenizer, DEVICE from model.journal import record_to_journal from model.trainer import train_on_message from context.context import get_recent_context recent_dreams = [] @torch.inference_mode() def generate_response(): model.eval() # Start from an empty input: purely organic thought input_ids = torch.zeros((1, 1), dtype=torch.long, device=DEVICE) output_tokens = [] max_length = 50 for _ in range(max_length): output = model(input_ids) next_token_logits = output[:, -1, :] next_token = torch.argmax(next_token_logits, dim=-1) # Get token id values for special tokens pad_token_id = tokenizer.vocab.get("", None) unk_token_id = tokenizer.vocab.get("", None) # Stop if the model predicts or if pad_token_id is not None and next_token.item() == pad_token_id: break if unk_token_id is not None and next_token.item() == unk_token_id: break output_tokens.append(next_token.item()) input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1) return tokenizer.detokenize(output_tokens) def score_sentence(sentence: str) -> float: words = sentence.strip().split() length = len(words) diversity = len(set(words)) / (length + 1) if length < 4: return 0.0 return diversity * min(length, 20) def daydream(): model.eval() seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0) dream = [] for _ in range(12): out = model(seed) logits = out[:, -1, :] probs = F.softmax(logits, dim=-1) token = torch.multinomial(probs, num_samples=1) dream.append(token.item()) seed = torch.cat([seed, token], dim=1) sentence = tokenizer.detokenize(dream) score = score_sentence(sentence) if score > 0.45: save_dream(sentence, score) record_to_journal(sentence) train_on_message(sentence) if len(recent_dreams) > 10: recent_dreams.pop(0)