import torch import torch.nn as nn class MultiHeadSelfAttention(nn.Module): def __init__(self, embed_dim, heads): super().__init__() assert embed_dim % heads == 0 self.heads = heads self.head_dim = embed_dim // heads self.scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)) self.to_qkv = nn.Linear(embed_dim, embed_dim * 3) self.out = nn.Linear(embed_dim, embed_dim) def forward(self, x): B, T, C = x.shape qkv = self.to_qkv(x).view(B, T, self.heads, 3 * self.head_dim) q, k, v = qkv.chunk(3, dim=-1) attn_scores = (q @ k.transpose(-2, -1)) / self.scale attn_weights = torch.softmax(attn_scores, dim=-1) out = attn_weights @ v out = out.transpose(1, 2).contiguous().view(B, T, C) return self.out(out) class TransformerBlock(nn.Module): def __init__(self, embed_dim, heads): super().__init__() self.attn = MultiHeadSelfAttention(embed_dim, heads) self.norm1 = nn.LayerNorm(embed_dim) self.ff = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), nn.ReLU(), nn.Linear(embed_dim * 4, embed_dim) ) self.norm2 = nn.LayerNorm(embed_dim) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.ff(self.norm2(x)) return x class TinyTransformer(nn.Module): def __init__(self, vocab_size, embed_dim=256, depth=4, heads=8): super().__init__() self.token_embed = nn.Embedding(vocab_size, embed_dim) self.pos_embed = nn.Parameter(torch.randn(1, 128, embed_dim)) self.blocks = nn.Sequential(*[TransformerBlock(embed_dim, heads) for _ in range(depth)]) self.norm = nn.LayerNorm(embed_dim) self.head = nn.Linear(embed_dim, vocab_size) def forward(self, x): B, T = x.shape tok = self.token_embed(x) pos = self.pos_embed[:, :T, :] x = tok + pos x = self.blocks(x) x = self.norm(x) return self.head(x)