import random import torch import torch.nn.functional as F from model.memory import save_dream from model.brain_state import model, tokenizer, DEVICE from model.journal import record_to_journal from model.trainer import train_on_message from context.context import get_recent_context recent_dreams = [] @torch.no_grad() def generate_response(): model.eval() seed = torch.randint(0, model.head.out_features, (1, 1), device=DEVICE) input_ids = seed output_tokens = [] for _ in range(50): # Max 50 tokens (short sentences) output = model(input_ids) next_token_logits = output[:, -1, :] / 0.8 # temperature 0.8 # Top-K Sampling top_k = 40 values, indices = torch.topk(next_token_logits, k=top_k) probs = F.softmax(values, dim=-1) sampled_idx = torch.multinomial(probs, num_samples=1) next_token = indices.gather(-1, sampled_idx) output_tokens.append(next_token.item()) input_ids = torch.cat([input_ids, next_token.view(1, 1)], dim=1) # Break if punctuation (end of sentence) word = tokenizer.detokenize(next_token.item()) if word in [".", "!", "?"]: break return tokenizer.detokenize(output_tokens) def score_sentence(sentence: str) -> float: words = sentence.strip().split() length = len(words) diversity = len(set(words)) / (length + 1) if length < 4: return 0.0 return diversity * min(length, 20) def daydream(): model.eval() seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0) dream = [] for _ in range(12): out = model(seed) logits = out[:, -1, :] probs = F.softmax(logits, dim=-1) token = torch.multinomial(probs, num_samples=1) dream.append(token.item()) seed = torch.cat([seed, token], dim=1) sentence = tokenizer.detokenize(dream) score = score_sentence(sentence) if score > 0.45: save_dream(sentence, score) record_to_journal(sentence) train_on_message(sentence) if len(recent_dreams) > 10: recent_dreams.pop(0)