import torch from model.brain_architecture import TinyTransformer from model.brain_state import model, tokenizer, DEVICE optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) def get_optimizer(): global optimizer return optimizer def expand_model_if_needed(): global model, optimizer current_vocab_size = len(tokenizer.vocab) + 10 # Buffer old_vocab_size = model.head.out_features if current_vocab_size <= old_vocab_size: return print(f"Expanding model from {old_vocab_size} -> {current_vocab_size}") old_state = model.state_dict() new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE) # Transfer matching parameters with torch.no_grad(): for name, param in new_model.named_parameters(): if name in old_state and old_state[name].shape == param.shape: param.copy_(old_state[name]) model = new_model opt = get_optimizer() print("Model expanded and optimizer rebuilt.")