Ruby/model/dreamer.py

59 lines
1.7 KiB
Python

import random
import torch
import torch.nn.functional as F
from model.brain import model, tokenizer, DEVICE, score_sentence
from model.trainer import train_on_message
from model.dreams import save_dream, load_dreams
from model.journal import record_to_journal
from model.dynamic_expand import expand_model_if_needed
from context.context import load_context
recent_dreams = []
def daydream():
model.eval()
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
dream = []
for _ in range(12):
out = model(seed)
logits = out[:, -1, :]
probs = F.softmax(logits, dim=-1)
token = torch.multinomial(probs, num_samples=1)
dream.append(token.item())
seed = torch.cat([seed, token], dim=1)
sentence = tokenizer.detokenize(dream)
score = score_sentence(sentence)
if score > 0.5:
save_dream(sentence, score)
record_to_journal(sentence)
train_on_message(sentence)
if len(recent_dreams) > 10:
recent_dreams.pop(0)
def replay_dreams():
expand_model_if_needed()
dreams = load_dreams()
context = load_context()
if not dreams or not context:
return
selected_dreams = random.sample(dreams, min(len(dreams), 5))
selected_contexts = random.sample(context, min(len(context), 5))
# Mix dreams and past contexts into a chaotic dream
all_sources = [d["sentence"] for d in selected_dreams] + [c["text"] for c in selected_contexts]
random.shuffle(all_sources)
mixed_sentence = " ".join(random.sample(all_sources, min(len(all_sources), 3)))
if mixed_sentence:
train_on_message(mixed_sentence, source="dream")