Ruby/model/dynamic_expand.py

50 lines
1.4 KiB
Python

import torch
import threading
import time
from model.brain_architecture import TinyTransformer
from model.brain_state import model, tokenizer, DEVICE
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
_last_vocab_size = 0
expand_lock = threading.Lock()
_last_expansion_time = 0
def get_optimizer():
return optimizer
def expand_model_if_needed():
global model, optimizer, _last_expansion_time
with expand_lock:
current_vocab_size = len(tokenizer.vocab) + 10
old_vocab_size = model.head.out_features
if current_vocab_size <= old_vocab_size:
return False # No expansion needed
# print(f"[Expand] Expanding model from {old_vocab_size} -> {current_vocab_size}")
old_state = model.state_dict()
new_model = TinyTransformer(
vocab_size=current_vocab_size,
embed_dim=model.token_embed.embedding_dim,
depth=len(model.blocks),
heads=model.blocks[0].attn.heads
).to(DEVICE)
with torch.no_grad():
for name, param in new_model.named_parameters():
if name in old_state and old_state[name].shape == param.shape:
param.copy_(old_state[name])
model = new_model
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
_last_expansion_time = time.time()
# print("[Expand] Expansion complete.")
return True # <<< tell trainer we expanded