74 lines
2.0 KiB
Python
74 lines
2.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import random
|
|
from model.tokenizer import Tokenizer
|
|
import torch.nn.functional as F
|
|
from model.memory import save_dream
|
|
import time
|
|
|
|
recent_dreams = []
|
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
tokenizer = Tokenizer()
|
|
VOCAB_SIZE = 10000 # Temporary cap, grows dynamically
|
|
EMBED_DIM = 128
|
|
|
|
|
|
class TinyTransformer(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.embed = nn.Embedding(VOCAB_SIZE, EMBED_DIM)
|
|
self.ln1 = nn.LayerNorm(EMBED_DIM)
|
|
self.fc = nn.Linear(EMBED_DIM, VOCAB_SIZE)
|
|
|
|
def forward(self, x):
|
|
x = self.embed(x)
|
|
x = self.ln1(x)
|
|
return self.fc(x)
|
|
|
|
|
|
model = TinyTransformer().to(DEVICE)
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
|
loss_fn = nn.CrossEntropyLoss()
|
|
|
|
|
|
def generate_response():
|
|
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE)
|
|
output = model(seed.unsqueeze(0))
|
|
pred = torch.argmax(output, dim=-1).squeeze().tolist()
|
|
if not isinstance(pred, list):
|
|
pred = [pred]
|
|
return tokenizer.detokenize(pred)
|
|
|
|
|
|
def score_sentence(sentence: str) -> float:
|
|
words = sentence.strip().split()
|
|
length = len(words)
|
|
diversity = len(set(words)) / (length + 1)
|
|
if length < 4:
|
|
return 0.0
|
|
return diversity * min(length, 20)
|
|
|
|
|
|
def daydream():
|
|
model.eval()
|
|
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
|
|
dream = []
|
|
|
|
for _ in range(12): # generate 12-word thought
|
|
out = model(seed)
|
|
logits = out[:, -1, :]
|
|
probs = F.softmax(logits, dim=-1)
|
|
token = torch.multinomial(probs, num_samples=1)
|
|
dream.append(token.item())
|
|
seed = torch.cat([seed, token], dim=1)
|
|
|
|
sentence = tokenizer.detokenize(dream)
|
|
score = score_sentence(sentence)
|
|
|
|
if score > 0.3:
|
|
save_dream(sentence, score)
|
|
recent_dreams.append((score, sentence))
|
|
if len(recent_dreams) > 10:
|
|
recent_dreams.pop(0)
|