Ruby/model/dynamic_expand.py
2025-04-25 23:16:18 -04:00

37 lines
1001 B
Python

import torch
from model.brain_architecture import TinyTransformer
from model.brain_state import model, tokenizer, DEVICE
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
def get_optimizer():
global optimizer
return optimizer
def expand_model_if_needed():
global model, optimizer
current_vocab_size = len(tokenizer.vocab) + 10 # Buffer
old_vocab_size = model.head.out_features
if current_vocab_size <= old_vocab_size:
return
print(f"Expanding model from {old_vocab_size} -> {current_vocab_size}")
old_state = model.state_dict()
new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE)
# Transfer matching parameters
with torch.no_grad():
for name, param in new_model.named_parameters():
if name in old_state and old_state[name].shape == param.shape:
param.copy_(old_state[name])
model = new_model
opt = get_optimizer()
print("Model expanded and optimizer rebuilt.")