Ruby/brain.py
2025-05-04 17:32:25 -04:00

37 lines
1.0 KiB
Python

import torch
import torch.nn as nn
class Brain(nn.Module):
"""
Minimal Transformer-based autoregressive model.
"""
def __init__(
self,
vocab_size: int,
d_model: int = 256,
nhead: int = 4,
num_layers: int = 2,
dim_feedforward: int = 512,
max_seq_len: int = 128,
):
super().__init__()
self.token_emb = nn.Embedding(vocab_size, d_model)
self.pos_emb = nn.Parameter(torch.zeros(1, max_seq_len, d_model))
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
batch_first=True,
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc_out = nn.Linear(d_model, vocab_size)
self.max_seq_len = max_seq_len
def forward(self, x: torch.Tensor) -> torch.Tensor:
seq_len = x.size(1)
x = self.token_emb(x) + self.pos_emb[:, :seq_len, :]
x = self.transformer(x)
return self.fc_out(x)