Ruby/model/brain.py
2025-04-26 22:42:49 -04:00

69 lines
2.0 KiB
Python

import random
import torch
import torch.nn.functional as F
from model.memory import save_dream
from model.brain_state import model, tokenizer, DEVICE
from model.journal import record_to_journal
from model.trainer import train_on_message
from context.context import get_recent_context
recent_dreams = []
def generate_response():
model.eval()
context_texts = get_recent_context(5)
if context_texts:
start = random.choice(context_texts)
seed_tokens = tokenizer.tokenize(start)
if seed_tokens:
seed = torch.tensor([seed_tokens[-1]], device=DEVICE).unsqueeze(0)
seed = seed[:, -128:]
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
output = model(seed)
pred = torch.argmax(output, dim=-1).squeeze().item()
# Clamp prediction into known vocab range
if pred >= tokenizer.next_id:
pred = random.randint(0, tokenizer.next_id - 1)
return tokenizer.detokenize([pred])
def score_sentence(sentence: str) -> float:
words = sentence.strip().split()
length = len(words)
diversity = len(set(words)) / (length + 1)
if length < 4:
return 0.0
return diversity * min(length, 20)
def daydream():
model.eval()
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
dream = []
for _ in range(12):
out = model(seed)
logits = out[:, -1, :]
probs = F.softmax(logits, dim=-1)
token = torch.multinomial(probs, num_samples=1)
dream.append(token.item())
seed = torch.cat([seed, token], dim=1)
sentence = tokenizer.detokenize(dream)
score = score_sentence(sentence)
if score > 0.45:
save_dream(sentence, score)
record_to_journal(sentence)
train_on_message(sentence)
if len(recent_dreams) > 10:
recent_dreams.pop(0)