Ruby/model/dynamic_expand.py
2025-04-26 22:42:49 -04:00

40 lines
1.1 KiB
Python

import torch
from model.brain_architecture import TinyTransformer
from model.brain_state import model, tokenizer, DEVICE
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
_last_expansion_vocab_size = 0
def get_optimizer():
return optimizer
def expand_model_if_needed():
global model, optimizer, _last_expansion_vocab_size
current_vocab_size = len(tokenizer.vocab) + 10
if current_vocab_size - _last_expansion_vocab_size < 5:
return # Only expand every 5 words
old_vocab_size = model.head.out_features
if current_vocab_size <= old_vocab_size:
return # No expansion needed
print(f"Expanding model from {old_vocab_size} -> {current_vocab_size}")
old_state = model.state_dict()
new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE)
# Transfer matching parameters
with torch.no_grad():
for name, param in new_model.named_parameters():
if name in old_state and old_state[name].shape == param.shape:
param.copy_(old_state[name])
model = new_model
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
print("Expansion complete.")