Ruby/model/trainer.py
2025-04-26 22:42:49 -04:00

49 lines
1.4 KiB
Python

import torch
import time
from model.dynamic_expand import expand_model_if_needed, get_optimizer
from model.brain_state import model, tokenizer, DEVICE, loss_fn
from context.context import add_to_context, get_recent_context
LOSS_FILE = "data/logs/loss.log"
def log_loss(value: float):
with open(LOSS_FILE, "a", encoding="utf-8") as f:
f.write(f"{time.time()},{round(value, 4)}\n")
def train_on_message(text: str, source: str = "user"):
expand_model_if_needed()
model.train()
context_texts = get_recent_context(3)
augmented_text = " ".join(context_texts + [text])
tokens = tokenizer.tokenize(augmented_text)
if len(tokens) < 2:
return
# ✋ Clamp to model's known vocab
max_token_id = model.head.out_features - 1
tokens = [t for t in tokens if t <= max_token_id]
if len(tokens) < 2:
return # after filtering, too short to train
tokens = tokens[:128] # safety clamp
input_tensor = torch.tensor(tokens[:-1], dtype=torch.long, device=DEVICE).unsqueeze(0)
target_tensor = torch.tensor(tokens[1:], dtype=torch.long, device=DEVICE).unsqueeze(0)
opt = get_optimizer()
output = model(input_tensor)
loss = loss_fn(output.view(-1, output.size(-1)), target_tensor.view(-1))
opt.zero_grad()
loss.backward()
opt.step()
log_loss(loss.item())
add_to_context(text, source=source)