Ruby/model/brain.py
2025-04-27 13:51:49 -04:00

84 lines
2.4 KiB
Python

import random
import torch
import torch.nn.functional as F
from model.memory import save_dream
from model.brain_state import model, tokenizer, DEVICE
from model.journal import record_to_journal
from model.trainer import train_on_message
from context.context import get_recent_context
recent_dreams = []
@torch.no_grad()
def generate_response():
model.eval()
context_texts = get_recent_context(10)
seed_text = " ".join(context_texts[-1:])
tokens = tokenizer.tokenize(seed_text)
input_tensor = torch.tensor(tokens, dtype=torch.long, device=DEVICE).unsqueeze(0)
output_tokens = []
max_tokens = 32
for _ in range(max_tokens):
output = model(input_tensor)
logits = output[:, -1, :].squeeze(0)
# Apply temperature (soft randomness)
temperature = 0.8
logits = logits / temperature
# Top-k sampling
k = 10
topk_logits, topk_indices = torch.topk(logits, k)
probs = torch.nn.functional.softmax(topk_logits, dim=-1)
next_token = topk_indices[torch.multinomial(probs, 1)].item()
output_tokens.append(next_token)
input_tensor = torch.cat([input_tensor, torch.tensor([[next_token]], device=DEVICE)], dim=1)
# Optional: stop if next_token maps to period, question mark, or exclamation
next_char = tokenizer.detokenize([next_token])
if any(p in next_char for p in [".", "?", "!"]):
break
text = tokenizer.detokenize(output_tokens)
return text
def score_sentence(sentence: str) -> float:
words = sentence.strip().split()
length = len(words)
diversity = len(set(words)) / (length + 1)
if length < 4:
return 0.0
return diversity * min(length, 20)
def daydream():
model.eval()
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
dream = []
for _ in range(12):
out = model(seed)
logits = out[:, -1, :]
probs = F.softmax(logits, dim=-1)
token = torch.multinomial(probs, num_samples=1)
dream.append(token.item())
seed = torch.cat([seed, token], dim=1)
sentence = tokenizer.detokenize(dream)
score = score_sentence(sentence)
if score > 0.45:
save_dream(sentence, score)
record_to_journal(sentence)
train_on_message(sentence)
if len(recent_dreams) > 10:
recent_dreams.pop(0)