Ruby/model/dynamic_expand.py
2025-04-25 23:00:04 -04:00

42 lines
1.4 KiB
Python

import torch
from model.brain_architecture import TinyTransformer
from model.brain_state import model, tokenizer, DEVICE, optimizer
import copy
def expand_model_if_needed():
current_vocab_size = len(tokenizer.vocab) + 10 # Tiny buffer
old_vocab_size = model.head.out_features
if current_vocab_size <= old_vocab_size:
return # No expansion needed
print(f"Expanding model from {old_vocab_size} -> {current_vocab_size}")
# Save old model
old_model = copy.deepcopy(model).to('cpu')
# Create new model
new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE)
new_optimizer = torch.optim.Adam(new_model.parameters(), lr=1e-4)
# Copy parameters
with torch.no_grad():
for name, param in old_model.named_parameters():
if name in dict(new_model.named_parameters()):
try:
new_param = dict(new_model.named_parameters())[name]
if param.shape == new_param.shape:
new_param.copy_(param)
else:
print(f"Skipping mismatched param: {name}")
except Exception as e:
print(f"Error copying param: {name}{e}")
# Replace global references
globals()["model"] = new_model
globals()["optimizer"] = new_optimizer
print("Expansion complete.")