Trying to use Deepseek to help instead of ChatGPT

This commit is contained in:
Dan 2025-01-28 10:33:23 -05:00
parent 326a7b81d7
commit ffcc60e205
5 changed files with 108099 additions and 70 deletions

1
.gitignore vendored
View File

@ -169,3 +169,4 @@ cython_debug/
# PyPI configuration file # PyPI configuration file
.pypirc .pypirc
/dataset_cache.bin

19
config.py Normal file
View File

@ -0,0 +1,19 @@
import os
import torch
from dotenv import load_dotenv
load_dotenv()
class Config:
model_dim = int(os.getenv("MODEL_DIM", 256))
num_layers = int(os.getenv("NUM_LAYERS", 4))
num_heads = int(os.getenv("HEADS", 8))
vocab_size = int(os.getenv("VOCAB_SIZE", 30000))
context_size = int(os.getenv("CONTEXT_SIZE", 512))
batch_size = int(os.getenv("BATCH_SIZE", 8))
lr = float(os.getenv("LEARNING_RATE", 1e-4))
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg = Config()

70
main.py
View File

@ -1,70 +0,0 @@
import discord
import requests
import json
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Replace with your bot token
BOT_TOKEN = os.getenv('DISCORD_TOKEN')
# Ollama configuration
OLLAMA_API_URL = 'http://192.168.1.159:11434/api/generate' # Adjust if your Ollama setup is different
# Set up the Discord client
intents = discord.Intents.default()
intents.messages = True
intents.message_content = True
client = discord.Client(intents=intents)
# Function to query Ollama
def query_ollama(prompt):
payload = {
"prompt": prompt,
"model": "nollama/mythomax-l2-13b:Q4_K_M" # Replace with your Ollama model
}
try:
response = requests.post(OLLAMA_API_URL, json=payload, stream=True)
if response.status_code == 200:
collected_response = ""
# Stream and parse each line of JSON from the response
for line in response.iter_lines(decode_unicode=True):
if line.strip(): # Skip empty lines
try:
data = json.loads(line) # Parse each line as JSON
collected_response += data.get("response", "")
if data.get("done", False):
break
except json.JSONDecodeError as e:
print(f"Error decoding JSON line: {line}, Error: {e}")
return collected_response.strip() or "No response from model."
else:
return f"Error: {response.status_code} - {response.text}"
except requests.RequestException as e:
return f"Error connecting to Ollama: {str(e)}"
# Event for when the bot is ready
@client.event
async def on_ready():
print(f'We have logged in as {client.user}')
# Event for when a message is sent
@client.event
async def on_message(message):
# Ignore the bot's own messages
if message.author == client.user:
return
# Respond to all messages except those in DMs
if not isinstance(message.channel, discord.DMChannel):
response = query_ollama(message.content.strip())
await message.channel.send(response)
# Run the bot
client.run(BOT_TOKEN)

107920
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

159
train.py Normal file
View File

@ -0,0 +1,159 @@
import torch
import torch.nn as nn
import time
import os
import numpy as np
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
from tokenizers import Tokenizer, models, trainers, decoders
from config import cfg
from torch.cuda.amp import autocast, GradScaler
# 1. Tokenizer Implementation (Modified)
class RubyTokenizer:
def __init__(self):
self.tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))
self.tokenizer.add_special_tokens(["[PAD]", "[UNK]"])
self.tokenizer.decoder = decoders.ByteLevel()
def train(self, texts):
trainer = trainers.BpeTrainer(
special_tokens=["[PAD]", "[UNK]"],
vocab_size=cfg.vocab_size,
min_frequency=2, # Modified
show_progress=True
)
self.tokenizer.train_from_iterator(
(text.split() for text in texts), # Modified: better word handling
trainer=trainer
)
def encode(self, text):
return self.tokenizer.encode(text).ids
@property
def pad_id(self):
return self.tokenizer.token_to_id("[PAD]") # Modified
# 2. Optimized Dataset (Modified padding handling)
class CachedDataset(Dataset):
def __init__(self):
self.data = np.memmap("dataset_cache.bin",
dtype=np.int32,
mode="r",
shape=(os.path.getsize("dataset_cache.bin")//4,))
def __len__(self):
return len(self.data) // cfg.context_size
def __getitem__(self, idx):
start = idx * cfg.context_size
return torch.from_numpy(self.data[start:start+cfg.context_size].copy())
# 3. Transformer Model (Modified padding_idx)
class Transformer(nn.Module):
def __init__(self, pad_id):
super().__init__()
self.embed = nn.Embedding(
cfg.vocab_size,
cfg.model_dim,
padding_idx=pad_id # Modified
)
self.blocks = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=cfg.model_dim,
nhead=cfg.num_heads,
dim_feedforward=cfg.model_dim*4,
batch_first=True
) for _ in range(cfg.num_layers)
])
self.head = nn.Linear(cfg.model_dim, cfg.vocab_size)
def forward(self, x):
x = self.embed(x)
for block in self.blocks:
x = block(x)
return self.head(x)
# 4. Main Training Process (Critical fixes)
def main():
# Initialize tokenizer
tokenizer = RubyTokenizer()
if not os.path.exists("dataset_cache.bin"):
print("Creating dataset cache...")
ds = load_dataset("openwebtext", split="train[:5%]")
# Train and save tokenizer (Modified)
if not os.path.exists("tokenizer.json"):
print("Training tokenizer...")
tokenizer.train([text for text in ds["text"] if len(text) > 100])
tokenizer.tokenizer.save("tokenizer.json")
else:
tokenizer.tokenizer = Tokenizer.from_file("tokenizer.json")
# Tokenize and cache data (Modified)
all_tokens = []
pad_id = tokenizer.pad_id
for text in ds["text"]:
tokens = tokenizer.encode(text)
tokens = tokens[:cfg.context_size] # Truncate after tokenization
pad_len = cfg.context_size - len(tokens)
all_tokens.extend(tokens + [pad_id]*pad_len) # Modified
memmap = np.memmap("dataset_cache.bin",
dtype=np.int32,
mode="w+",
shape=(len(all_tokens),))
memmap[:] = np.array(all_tokens, dtype=np.int32)
del memmap
# Test tokenizer (Modified)
test_text = "The quick brown fox jumps over the lazy dog."
print("Tokenizer test:", tokenizer.tokenizer.encode(test_text).tokens)
# Initialize model with pad_id (Modified)
model = Transformer(pad_id=tokenizer.pad_id).to(cfg.device)
opt = torch.optim.AdamW(model.parameters(), lr=cfg.lr)
scaler = GradScaler()
dataset = CachedDataset()
loader = DataLoader(dataset,
batch_size=cfg.batch_size,
pin_memory=True,
shuffle=True)
# Training loop (Modified loss calculation)
start = time.time()
for step, batch in enumerate(loader):
batch = batch.to(cfg.device, non_blocking=True)
inputs = batch[:, :-1]
targets = batch[:, 1:]
with autocast():
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(
outputs.reshape(-1, cfg.vocab_size),
targets.reshape(-1).long(),
ignore_index=tokenizer.pad_id # Modified
)
scaler.scale(loss).backward()
scaler.step(opt)
scaler.update()
opt.zero_grad()
if step % 10 == 0:
elapsed = time.time() - start
speed = (step + 1) * cfg.batch_size / elapsed
print(f"Step {step} | Loss: {loss.item():.4f} | Speed: {speed:.1f} samples/s")
if __name__ == "__main__":
main()