Compare commits

...

No commits in common. "dev" and "main" have entirely different histories.
dev ... main

7 changed files with 301 additions and 113 deletions

15
.github/workflows/discord_sync.yml vendored Normal file
View File

@ -0,0 +1,15 @@
name: Discord Webhook
on: [push]
jobs:
git:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Run Discord Webhook
uses: johnnyhuy/actions-discord-git-webhook@main
with:
webhook_url: ${{ secrets.YOUR_DISCORD_WEBHOOK_URL }}

8
.gitignore vendored
View File

@ -1,4 +1,3 @@
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -107,8 +106,10 @@ ipython_config.py
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
.pdm.toml
.pdm-python
.pdm-build/
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
@ -159,4 +160,5 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
/client_secret.json
/token.json

15
.vscode/launch.json vendored
View File

@ -1,15 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Jade",
"type": "debugpy",
"request": "launch",
"program": "E:\\Development\\AI Development\\Jade\\main.py",
"console": "integratedTerminal"
}
]
}

View File

@ -1,9 +0,0 @@
MIT License
Copyright (c) <year> <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,3 +0,0 @@
# Emerald
Emerald is an active learning AI project

264
main.py
View File

@ -1,10 +1,24 @@
# main.py: Discord Bot Code
import discord
import torch
from model import JadeModel
import os
import sqlite3
import time
import torch
import discord
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from google.auth.transport.requests import Request
from googleapiclient.discovery import build
from datetime import datetime, timedelta, timezone
from model import JadeModel
from dotenv import load_dotenv
from collections import deque
import uuid as uuid_lib
import json
# Constants
SCOPES = ['https://www.googleapis.com/auth/youtube.readonly']
DATABASE_FILE = 'global_user_data.db' # Updated database file name
CHANNEL_HANDLE = 'UCsVJcf4KbO8Vz308EKpSYxw'
STREAM_KEYWORD = "Live"
# Load environment variables
load_dotenv()
@ -18,23 +32,247 @@ client = discord.Client(intents=intents)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = JadeModel().to(device)
# Context management for conversation continuity
conversation_history = deque(maxlen=5) # Store the last 5 messages for context
training_data = [] # Store live messages for training purposes
# Profile Manager
class ProfileManager:
def __init__(self):
self._create_profiles_table()
def _create_profiles_table(self):
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS global_profiles (
uuid TEXT PRIMARY KEY,
discord_user_id TEXT UNIQUE,
youtube_channel_id TEXT UNIQUE,
points INTEGER DEFAULT 0,
last_interaction TIMESTAMP,
subscription_status TEXT,
first_seen_as_member TIMESTAMP,
has_opted_in INTEGER DEFAULT 0
)
''')
conn.commit()
conn.close()
def get_or_create_uuid(self, discord_id=None, youtube_id=None):
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
uuid = None
if discord_id:
cursor.execute("SELECT uuid FROM global_profiles WHERE discord_user_id = ?", (discord_id,))
result = cursor.fetchone()
if result:
uuid = result[0]
if not uuid and youtube_id:
cursor.execute("SELECT uuid FROM global_profiles WHERE youtube_channel_id = ?", (youtube_id,))
result = cursor.fetchone()
if result:
uuid = result[0]
if not uuid:
uuid = str(uuid_lib.uuid4())
cursor.execute('''
INSERT INTO global_profiles (uuid, discord_user_id, youtube_channel_id)
VALUES (?, ?, ?)
''', (uuid, discord_id, youtube_id))
conn.commit()
conn.close()
return uuid
def update_subscription_status(self, youtube_id, status):
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('''
UPDATE global_profiles
SET subscription_status = ?, last_interaction = ?
WHERE youtube_channel_id = ?
''', (status, datetime.utcnow(), youtube_id))
conn.commit()
conn.close()
def delete_user_data(self, uuid):
# Delete user data to comply with GDPR
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('SELECT * FROM global_profiles WHERE uuid = ?', (uuid,))
user_data = cursor.fetchone()
if user_data:
with open(f'deleted_user_data_{uuid}.json', 'w') as f:
json.dump({
'uuid': user_data[0],
'discord_user_id': user_data[1],
'youtube_channel_id': user_data[2],
'points': user_data[3],
'last_interaction': user_data[4],
'subscription_status': user_data[5],
'first_seen_as_member': user_data[6],
'has_opted_in': user_data[7]
}, f)
cursor.execute('DELETE FROM global_profiles WHERE uuid = ?', (uuid,))
conn.commit()
conn.close()
def has_opted_in(self, uuid):
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('SELECT has_opted_in FROM global_profiles WHERE uuid = ?', (uuid,))
result = cursor.fetchone()
conn.close()
return result and result[0] == 1
def set_opt_in(self, uuid, opted_in=True):
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('''
UPDATE global_profiles
SET has_opted_in = ?
WHERE uuid = ?
''', (1 if opted_in else 0, uuid))
conn.commit()
conn.close()
profile_manager = ProfileManager()
# YouTube API Functions
def get_authenticated_service():
flow = InstalledAppFlow.from_client_secrets_file(
'client_secret.json', SCOPES)
creds = flow.run_local_server(port=63355)
with open('token.json', 'w') as token:
token.write(creds.to_json())
return build('youtube', 'v3', credentials=creds)
def find_correct_live_video(youtube, channel_id, keyword):
request = youtube.search().list(
part="snippet",
channelId=channel_id,
eventType="live",
type="video"
)
response = request.execute()
items = response.get('items', [])
for item in items:
title = item['snippet']['title']
if keyword.lower() in title.lower():
return item['id']['videoId']
return None
def get_live_chat_id(youtube, video_id):
request = youtube.videos().list(
part="liveStreamingDetails",
id=video_id
)
response = request.execute()
items = response.get('items', [])
if items:
return items[0]['liveStreamingDetails'].get('activeLiveChatId')
return None
def monitor_youtube_chat(youtube, live_chat_id):
if not live_chat_id:
print("No valid live chat ID found.")
return False
next_page_token = None
while True:
try:
request = youtube.liveChatMessages().list(
liveChatId=live_chat_id,
part="snippet,authorDetails",
maxResults=200,
pageToken=next_page_token
)
response = request.execute()
if 'items' in response and response['items']:
for item in response['items']:
user_id = item['authorDetails']['channelId']
display_name = item['authorDetails']['displayName']
is_moderator = item['authorDetails']['isChatModerator']
is_member = item['authorDetails']['isChatSponsor']
message = item['snippet']['displayMessage']
uuid = profile_manager.get_or_create_uuid(youtube_id=user_id)
if is_member:
profile_manager.update_subscription_status(user_id, "subscribed")
else:
profile_manager.update_subscription_status(user_id, "none")
print(f"[{datetime.utcnow()}] {display_name}: {message} (UUID: {uuid})")
# Add live chat message to training data if the user has opted in
if profile_manager.has_opted_in(uuid):
training_data.append((display_name, message))
next_page_token = response.get('nextPageToken')
else:
print("No new messages detected; continuing to poll...")
except Exception as e:
print(f"Error while monitoring chat: {e}")
time.sleep(30) # Wait before retrying in case of an error
time.sleep(10) # Adjust this delay as needed
# Discord Event Handlers
@client.event
async def on_ready():
print(f'We have logged in as {client.user}')
@client.event
async def on_message(message):
if message.author == client.user:
return
# Train Jade with the new message
model.train_on_message(message.content)
# Link the Discord user to the correct global profile UUID
uuid = profile_manager.get_or_create_uuid(discord_id=str(message.author.id))
# Generate a response using Jade
response = model.generate_response(message.content)
await message.channel.send(response)
# Ensure user has opted in before interacting
if not profile_manager.has_opted_in(uuid):
await message.channel.send("Please type '!optin' to confirm that you agree to data usage and interaction with this bot.")
return
# Start the bot with your token
client.run(os.getenv('DISCORD_TOKEN'))
if message.content.lower() == '!optin':
profile_manager.set_opt_in(uuid, True)
await message.channel.send("You have successfully opted in to data usage.")
return
# Add the message to conversation history for context
conversation_history.append(message.content)
# Generate a response using Jade with context
context = "\n".join(conversation_history)
response = model.generate_response(context)
if response:
await message.channel.send(response)
print(f"Discord Interaction: User {message.author} (UUID: {uuid})")
# Main Function to Start Both Services
def main():
youtube = get_authenticated_service()
channel_id = profile_manager.get_or_create_uuid(youtube_id=CHANNEL_HANDLE)
video_id = find_correct_live_video(youtube, channel_id, STREAM_KEYWORD)
if video_id:
live_chat_id = get_live_chat_id(youtube, video_id)
if live_chat_id:
print("Monitoring YouTube live chat...")
monitor_youtube_chat(youtube, live_chat_id)
else:
print("No live chat ID available.")
else:
print("Could not find the correct live stream or it is not live.")
client.run(os.getenv('DISCORD_TOKEN'))
if __name__ == "__main__":
main()

100
model.py
View File

@ -1,17 +1,14 @@
# Suggested Refinements for Jade (Model.py)
import torch
import torch.nn as nn
import torch.optim as optim
import random
import string
import numpy as np
import os
from torch.cuda.amp import GradScaler, autocast
class JadeModel(nn.Module):
def __init__(self):
def __init__(self, load_model_path=None):
super(JadeModel, self).__init__()
# GPT-like Transformer architecture
self.vocab_size = 256 # Character-level tokenization (ASCII range)
self.vocab_size = 512 # Character-level tokenization (ASCII range)
self.embedding_dim = 768 # GPT-like embedding dimension
self.num_heads = 12 # Number of attention heads
self.num_layers = 12 # Number of transformer layers
@ -31,19 +28,20 @@ class JadeModel(nn.Module):
self.fc = nn.Linear(self.embedding_dim, self.vocab_size)
self.softmax = nn.Softmax(dim=-1)
# Optimizer and loss function
self.optimizer = optim.Adam(self.parameters(), lr=0.001)
self.criterion = nn.CrossEntropyLoss()
# Device setup
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.to(self.device)
# Debug message to verify changes (updated unique message for each change)
self.debug_message = "[DEBUG] Model initialized with version: Jade-Solstice-Horizon"
print(self.debug_message)
# Load model state if path is provided
if load_model_path and os.path.exists(load_model_path):
self.load_model(load_model_path)
print(f"Model loaded from {load_model_path}")
def forward(self, input_ids):
# Truncate input_ids if longer than max_position_embeddings
if input_ids.size(1) > self.max_position_embeddings:
input_ids = input_ids[:, -self.max_position_embeddings:]
# Create position ids for input sequence
seq_length = input_ids.size(1)
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=self.device)
@ -60,16 +58,18 @@ class JadeModel(nn.Module):
x = self.fc(x)
return x
def generate_response(self, input_text, initial_temperature=0.85, top_p=0.8, repetition_penalty=1.4, max_token_frequency=2):
def generate_response(self, input_text, initial_temperature=0.85, top_p=0.8, repetition_penalty=1.4, max_token_frequency=2, max_length=50, min_response_length=5):
# Convert input_text to token ids
input_ids = self.tokenize(input_text)
if len(input_ids) > self.max_position_embeddings:
input_ids = input_ids[-self.max_position_embeddings:] # Truncate if too long
input_tensor = torch.tensor(input_ids).unsqueeze(0).to(self.device)
generated_tokens = input_ids.copy()
recent_tokens = list(input_ids[-10:]) # Expanded recent tokens window to 10
generated_tokens = input_ids.copy() # Start with input tokens to use as context
temperature = initial_temperature
recent_tokens = list(input_ids[-10:]) # Expanded recent tokens window to 10
with torch.no_grad():
for i in range(50): # Generate up to 50 more tokens
with torch.no_grad(), autocast():
for _ in range(max_length): # Generate up to max_length more tokens
output = self.forward(input_tensor)
logits = output[:, -1, :] # Consider only the last token's logits
logits = logits / (temperature + 1e-2) # Apply temperature for sampling diversity
@ -79,9 +79,6 @@ class JadeModel(nn.Module):
if generated_tokens.count(token) > 1:
logits[0, token] /= (repetition_penalty + generated_tokens.count(token) * 0.02) # Frequency-based scaling for penalty
# Apply slight logits smoothing to avoid overly confident peaks
logits = logits - torch.mean(logits) * 0.01
# Dynamic Nucleus (top-p) sampling with adjusted threshold
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(self.softmax(sorted_logits), dim=-1)
@ -95,18 +92,8 @@ class JadeModel(nn.Module):
else:
sampled_token = sorted_indices[0, 0].item() # Fallback to the most probable token if none pass the top-p threshold
# Enforce diversity constraint by limiting token frequency
if generated_tokens.count(sampled_token) >= max_token_frequency:
logits[0, sampled_token] -= 1.5 # Adjusted penalty to limit token frequency
continue # Skip adding this token if it has reached the max frequency
# Stop repetition if the sampled token was recently repeated
if len(generated_tokens) > 1 and generated_tokens[-1] == sampled_token:
continue
# Add token and update state
generated_tokens.append(sampled_token)
recent_tokens.append(sampled_token)
if len(recent_tokens) > 10:
recent_tokens.pop(0) # Maintain a window of recent tokens to suppress
@ -115,44 +102,17 @@ class JadeModel(nn.Module):
# Gradually decrease temperature to reduce randomness more smoothly
temperature = max(0.75, temperature * 0.98)
response = self.detokenize(generated_tokens)
print("[DEBUG] Generated response:", response) # Debug statement to verify changes
print(f"[DEBUG] Generation loss rate (approximated): {temperature}") # Approximate loss rate
return response
response = self.detokenize(generated_tokens[len(input_ids):]) # Exclude the input from the response
return response if len(response.strip()) > 0 else None
def load_model(self, path):
self.load_state_dict(torch.load(path, map_location=self.device))
# Placeholder tokenization method (to be replaced with optimized tokenizer)
def tokenize(self, text):
# Character-level tokenizer: converts text to ASCII values
token_ids = [ord(char) for char in text if ord(char) < self.vocab_size]
return token_ids
return [ord(c) for c in text]
def detokenize(self, token_ids):
# Detokenizer to convert ASCII values back to characters
return "".join([chr(id) for id in token_ids])
def train_on_message(self, message):
# Tokenize the message
input_ids = self.tokenize(message)
input_tensor = torch.tensor(input_ids).unsqueeze(0).to(self.device)
# Create target labels (next character prediction task)
labels = input_ids[1:] + [input_ids[-1]] # Shift tokens for training
labels_tensor = torch.tensor(labels).unsqueeze(0).to(self.device)
# Training step
self.optimizer.zero_grad()
outputs = self.forward(input_tensor)
loss = self.criterion(outputs.view(-1, outputs.size(-1)), labels_tensor.view(-1))
loss.backward()
self.optimizer.step()
print(f"Training loss: {loss.item()}")
# Changes made:
# Version: Jade-Solstice-Horizon
# - Reverted temperature, top_p, and repetition penalty settings to be closer to Solstice.
# - Introduced explicit stop criteria to prevent repeating tokens consecutively.
# - Applied slight smoothing to logits to prevent high peaks and excessive repetition.
# - Updated debug message to reflect the new version.
# Observations:
# - Aimed to retain the strengths of Solstice while reducing remaining issues with repetitive tokens by adding specific repetition stop criteria.
# Placeholder detokenization method (to be replaced with optimized tokenizer)
def detokenize(self, tokens):
return ''.join([chr(t) for t in tokens])