Creating the project.
This commit is contained in:
219
.gitignore
vendored
Normal file
219
.gitignore
vendored
Normal file
@@ -0,0 +1,219 @@
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[codz]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py.cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
# Pipfile.lock
|
||||
|
||||
# UV
|
||||
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# uv.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
# poetry.lock
|
||||
# poetry.toml
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
||||
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
||||
# pdm.lock
|
||||
# pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# pixi
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
||||
# pixi.lock
|
||||
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
||||
# in the .venv directory. It is recommended not to include this directory in version control.
|
||||
.pixi
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# Redis
|
||||
*.rdb
|
||||
*.aof
|
||||
*.pid
|
||||
|
||||
# RabbitMQ
|
||||
mnesia/
|
||||
rabbitmq/
|
||||
rabbitmq-data/
|
||||
|
||||
# ActiveMQ
|
||||
activemq-data/
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
# .idea/
|
||||
|
||||
# Abstra
|
||||
# Abstra is an AI-powered process automation framework.
|
||||
# Ignore directories containing user credentials, local state, and settings.
|
||||
# Learn more at https://abstra.io/docs
|
||||
.abstra/
|
||||
|
||||
# Visual Studio Code
|
||||
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
||||
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
||||
# you could uncomment the following to ignore the entire vscode folder
|
||||
# .vscode/
|
||||
|
||||
# Ruff stuff:
|
||||
.ruff_cache/
|
||||
|
||||
# PyPI configuration file
|
||||
.pypirc
|
||||
|
||||
# Marimo
|
||||
marimo/_static/
|
||||
marimo/_lsp/
|
||||
__marimo__/
|
||||
|
||||
# Streamlit
|
||||
.streamlit/secrets.toml
|
||||
|
||||
# Data/Material that should not be synced
|
||||
data.txt
|
65
README.md
Normal file
65
README.md
Normal file
@@ -0,0 +1,65 @@
|
||||
# ARIA — Zero-to-Tiny LLM (Python)
|
||||
|
||||
**ARIA** is a beginner-friendly, step-by-step course that takes you from **“Hello World”** to training a **tiny decoder-only, character-level LLM** in Python. Each lesson is a single, runnable file with clear docstrings, doctests where helpful, and minimal dependencies.
|
||||
|
||||
> **Note:** This repository’s instructional content was **generated with the assistance of an AI language model**.
|
||||
|
||||
---
|
||||
|
||||
## What you’ll build
|
||||
|
||||
- A progression of tiny language models:
|
||||
- Count-based bigram model → NumPy softmax toy → PyTorch bigram NN
|
||||
- Single-head self-attention → Mini Transformer block
|
||||
- A tiny decoder-only model trained on a small corpus (e.g., Tiny Shakespeare)
|
||||
|
||||
---
|
||||
|
||||
## Who this is for
|
||||
|
||||
- Beginners who can run `python script.py` and have written a basic “Hello World”.
|
||||
- Learners who want a **clear path** to an LLM without heavy math or large datasets.
|
||||
|
||||
---
|
||||
|
||||
## Course outline (lessons)
|
||||
|
||||
1. Read a Text File (with docstrings)
|
||||
2. Character Frequency Counter
|
||||
3. Train/Val Split
|
||||
4. Char Vocabulary + Encode/Decode
|
||||
5. Uniform Random Text Generator
|
||||
6. Bigram Counts Language Model
|
||||
7. Laplace Smoothing (compare w/ and w/o)
|
||||
8. Temperature & Top-k Sampling
|
||||
9. Perplexity on Validation
|
||||
10. NumPy Softmax + Cross-Entropy (toy)
|
||||
11. PyTorch Tensors 101
|
||||
12. Autograd Mini-Lab (fit *y = 2x + 3*)
|
||||
13. Char Bigram Neural LM (PyTorch)
|
||||
14. Sampling Function (PyTorch)
|
||||
15. Single-Head Self-Attention (causal mask)
|
||||
16. Mini Transformer Block (pre-LN)
|
||||
17. Tiny Decoder-Only Model (1–2 blocks)
|
||||
18. *(Optional)* Save/Load & CLI Interface
|
||||
|
||||
Each lesson includes: **Outcome, Files, Dependencies, Directions, Starter Code with docstrings + doctests, Run, What you learned, Troubleshooting, Mini-exercises, Next lesson.**
|
||||
|
||||
---
|
||||
|
||||
## Requirements
|
||||
|
||||
- **Python**: 3.10+
|
||||
- **OS**: Windows/macOS/Linux (UTF-8 locale recommended)
|
||||
- **Dependencies**:
|
||||
- Stdlib only until Lesson 9
|
||||
- **NumPy** for Lessons 8–10
|
||||
- **PyTorch** (CPU is fine) from Lesson 11 onward
|
||||
- **Hardware**: CPU is enough for all lessons; tiny models, short runs
|
||||
|
||||
Install common deps (when needed):
|
||||
|
||||
```bash
|
||||
pip install numpy torch --upgrade
|
||||
|
||||
```
|
83
prompt.md
Normal file
83
prompt.md
Normal file
@@ -0,0 +1,83 @@
|
||||
# Prompt.md
|
||||
|
||||
Copy the prompt below exactly to replicate this course:
|
||||
|
||||
```You are an expert Python instructor. Generate a complete, beginner-friendly course called
|
||||
“ARIA — Zero-to-Tiny LLM (Python)” that takes a learner from “Hello World” to training a tiny
|
||||
decoder-only, character-level LLM in ~17–18 single-file lessons. No safety/guardrail features;
|
||||
assume a controlled learning environment.
|
||||
|
||||
=== Audience & Scope
|
||||
- Audience: absolute beginners who have only written “Hello World”.
|
||||
- Language: Python.
|
||||
- Goal: build up to a tiny decoder-only LLM trained on a small corpus (e.g., Tiny Shakespeare).
|
||||
- Keep each lesson runnable in a single .py file (≤ ~200 lines where feasible).
|
||||
|
||||
=== Output Format (for EACH lesson)
|
||||
Use this exact section order:
|
||||
1) Title
|
||||
2) Duration (estimate)
|
||||
3) Outcome (what they will accomplish)
|
||||
4) Files to create (filenames)
|
||||
5) Dependencies (Python stdlib / NumPy / PyTorch as specified)
|
||||
6) Step-by-step Directions
|
||||
7) Starter code (complete, runnable) with:
|
||||
- A clear module docstring that includes: what it does, how to run, and notes.
|
||||
- Function-level Google-style docstrings (Args/Returns/Raises) + at least one doctest where reasonable.
|
||||
8) How to run (CLI commands)
|
||||
9) What you learned (bullets)
|
||||
10) Troubleshooting (common errors + fixes)
|
||||
11) Mini-exercises (3–5 quick tasks)
|
||||
12) What’s next (name the next lesson)
|
||||
|
||||
=== Curriculum (keep these names and order)
|
||||
01) Read a Text File (with docstrings)
|
||||
02) Character Frequency Counter
|
||||
03) Train/Val Split
|
||||
04) Char Vocabulary + Encode/Decode
|
||||
05) Uniform Random Text Generator
|
||||
06) Bigram Counts Language Model
|
||||
07) Laplace Smoothing (compare w/ and w/o)
|
||||
08) Temperature & Top-k Sampling
|
||||
09) Perplexity on Validation
|
||||
10) NumPy Softmax + Cross-Entropy (toy)
|
||||
11) PyTorch Tensors 101
|
||||
12) Autograd Mini-Lab (fit y=2x+3)
|
||||
13) Char Bigram Neural LM (PyTorch)
|
||||
14) Sampling Function (PyTorch)
|
||||
15) Single-Head Self-Attention (causal mask)
|
||||
16) Mini Transformer Block (pre-LN)
|
||||
17) Tiny Decoder-Only Model (1–2 blocks)
|
||||
18) (Optional) Save/Load & CLI Interface
|
||||
|
||||
=== Constraints & Defaults
|
||||
- Dataset: do NOT auto-download. Expect a local `data.txt`. If missing, include a tiny built-in fallback sample so scripts still run.
|
||||
- Encoding: UTF-8. Normalize newlines to "\n" for consistency.
|
||||
- Seeds: demonstrate reproducibility (`random`, `numpy`, `torch`).
|
||||
- Dependencies:
|
||||
* Stdlib only until Lesson 9;
|
||||
* NumPy in Lessons 8–10;
|
||||
* PyTorch from Lesson 11 onward.
|
||||
- Training defaults (for Lessons 13+):
|
||||
* Batch size ~32, block size ~128, AdamW(lr=3e-4).
|
||||
* Brief note on early stopping when val loss plateaus.
|
||||
- Inference defaults:
|
||||
* Start with greedy; then temperature=0.8, top-k=50.
|
||||
- Keep code clean: type hints where helpful; no frameworks beyond NumPy/PyTorch; no external data loaders.
|
||||
|
||||
=== Lesson 1 Specifics
|
||||
For Lesson 1, include:
|
||||
- Module docstring with Usage example (`python 01_read_text.py`).
|
||||
- Functions: `load_text(path: Optional[Path])`, `normalize_newlines(text: str)`,
|
||||
`make_preview(text: str, n_chars: int = 200)`, `report_stats(text: str)`, `main()`.
|
||||
- At least one doctest per function where reasonable.
|
||||
- Fallback text snippet if `data.txt` isn’t found.
|
||||
- Output: total chars, unique chars, 200-char preview with literal "\n".
|
||||
|
||||
=== Delivery
|
||||
- Start with a short “How to use this repo” preface and a file tree suggestion.
|
||||
- Then render Lessons 01–18 in order, each with the exact section headings above.
|
||||
- End with a short FAQ (Windows vs. macOS paths, UTF-8 issues, CPU vs. GPU notes).
|
||||
|
||||
Generate now.
|
||||
```
|
Reference in New Issue
Block a user