# main.py import os import torch import json from config import * from tokenizers.word_tokenizer import WordTokenizer from models.gpt import GPT from training.trainer import TextDataset, train def load_texts(): text = "" print("[INFO] Scanning books from: data\\books") books_dir = "data/books" if os.path.exists(books_dir): for file in os.listdir(books_dir): if file.endswith(".txt"): print(f" 📚 Loading {file}") with open(os.path.join(books_dir, file), encoding="utf-8") as f: text += f.read() owt_dir = "data/openwebtext" if os.path.exists(owt_dir): print(f"[INFO] Scanning OpenWebText: {owt_dir}") for fname in os.listdir(owt_dir): if fname.endswith(".jsonl"): path = os.path.join(owt_dir, fname) print(f" 📄 Loading {fname}") try: with open(path, encoding="utf-8") as f: for i, line in enumerate(f): try: obj = json.loads(line) text += obj.get("text", "") except json.JSONDecodeError: continue if len(text) >= MAX_TOKENS * 10: break except Exception as e: print(f" ⚠️ Error reading {fname}: {e}") print("[INFO] Raw text loaded:", len(text), "characters") # Truncate to MAX_TOKENS * 10 (rough estimate) clipped = text[:MAX_TOKENS * 10] print("[INFO] Loaded text:", len(clipped), "characters") return clipped def main(): print("[INFO] Starting main()") raw_text = load_texts() print(f"[INFO] Loaded text: {len(raw_text)} characters") tokenizer = WordTokenizer(VOCAB_SIZE) tokenizer.fit(raw_text) tokenizer.save("catlin_tokenizer.pkl") print("[INFO] Tokenizer built and saved") tokens = tokenizer.encode(raw_text) print(f"[INFO] Total tokens: {len(tokens)}") dataset = TextDataset(tokens, CONTEXT_SIZE) if len(dataset) == 0: print("❌ ERROR: Dataset is empty. Aborting.") return model = GPT(VOCAB_SIZE, CONTEXT_SIZE, EMBED_DIM, NUM_HEADS, NUM_LAYERS) print("[INFO] Model initialized") train(model, dataset, DEVICE if torch.cuda.is_available() else "cpu", LEARNING_RATE, BATCH_SIZE, epochs=10) print("[INFO] Training complete") torch.save(model.state_dict(), "catlin_model.pt") print("[INFO] Model saved to catlin_model.pt") if __name__ == "__main__": main()