from rule_engine import RuleEngine, Rule class ContinuousLearning: def __init__(self, db_name): # Initialize RuleEngine self.rule_engine = RuleEngine(db_name) def add_initial_rules(self, rules): # Add initial rules to the rule engine for rule in rules: rule_obj = Rule(rule[0], rule[1]) # Create Rule object from input tuple self.rule_engine.add_rule(rule_obj) def handle_user_input(self, user_input): # Match user input against rules matched_rule = self.rule_engine.match_rule(user_input) if matched_rule: # Retrieve output pattern from matched rule response = matched_rule.output_pattern else: # No match found, generate default response response = "I'm sorry, I didn't understand that." return response def capture_user_feedback(self, user_input, user_feedback): # Update rule based on user feedback # This is the continuous learning part, where the rule engine is updated with new data # based on user feedback to improve its responses matched_rule = self.rule_engine.match_rule(user_input) if matched_rule: matched_rule.output_pattern = user_feedback # Update output pattern of matched rule self.rule_engine.update_rule(user_input, matched_rule.output_pattern) # Other methods for dynamic rule system functionality can be added here def process_message(self, user_input, user_feedback=None): # Implement message processing logic here # For example, you can call handle_user_input() to handle the user input # and return the response generated from the matched rule's output pattern. if user_feedback: self.capture_user_feedback(user_input, user_feedback) response = self.handle_user_input(user_input) return response