Files
Eris/continuous_learning.py
2023-04-06 20:59:16 -04:00

45 lines
1.9 KiB
Python

from rule_engine import RuleEngine, Rule
class ContinuousLearning:
def __init__(self, db_name):
# Initialize RuleEngine
self.rule_engine = RuleEngine(db_name)
def add_initial_rules(self, rules):
# Add initial rules to the rule engine
for rule in rules:
rule_obj = Rule(rule[0], rule[1]) # Create Rule object from input tuple
self.rule_engine.add_rule(rule_obj)
def handle_user_input(self, user_input):
# Match user input against rules
matched_rule = self.rule_engine.match_rule(user_input)
if matched_rule:
# Retrieve output pattern from matched rule
response = matched_rule.output_pattern
else:
# No match found, generate default response
response = "I'm sorry, I didn't understand that."
return response
def capture_user_feedback(self, user_input, user_feedback):
# Update rule based on user feedback
# This is the continuous learning part, where the rule engine is updated with new data
# based on user feedback to improve its responses
matched_rule = self.rule_engine.match_rule(user_input)
if matched_rule:
matched_rule.output_pattern = user_feedback # Update output pattern of matched rule
self.rule_engine.update_rule(user_input, matched_rule.output_pattern)
# Other methods for dynamic rule system functionality can be added here
def process_message(self, user_input, user_feedback=None):
# Implement message processing logic here
# For example, you can call handle_user_input() to handle the user input
# and return the response generated from the matched rule's output pattern.
if user_feedback:
self.capture_user_feedback(user_input, user_feedback)
response = self.handle_user_input(user_input)
return response