docs(04): create gap closure plans for memory and context management
Phase 04: Memory & Context Management - 3 gap closure plans to address verification issues - 04-05: Personality learning integration (PersonalityAdaptation, MemoryManager integration, src/personality.py) - 04-06: Vector Store missing methods (search_by_keyword, store_embeddings) - 04-07: Context-aware search metadata integration (get_conversation_metadata) - All gaps from verification report addressed - Updated roadmap to reflect 7 total plans
This commit is contained in:
@@ -51,11 +51,15 @@ Mai's development is organized into three major milestones, each delivering dist
|
||||
- Distill long-term patterns into personality layers
|
||||
- Proactively surface relevant context from memory
|
||||
|
||||
**Plans:** 4 plans in 3 waves
|
||||
**Status:** 3 gap closure plans needed to complete integration
|
||||
**Plans:** 7 plans in 4 waves
|
||||
- [x] 04-01-PLAN.md — Storage foundation with SQLite and sqlite-vec
|
||||
- [x] 04-02-PLAN.md — Semantic search and context-aware retrieval
|
||||
- [x] 04-03-PLAN.md — Progressive compression and JSON archival
|
||||
- [x] 04-04-PLAN.md — Personality learning and adaptive layers
|
||||
- [ ] 04-05-PLAN.md — Personality learning integration gap closure
|
||||
- [ ] 04-06-PLAN.md — Vector Store missing methods gap closure
|
||||
- [ ] 04-07-PLAN.md — Context-aware search metadata gap closure
|
||||
|
||||
### Phase 5: Conversation Engine
|
||||
- Multi-turn context preservation
|
||||
|
||||
211
.planning/phases/04-memory-context-management/04-05-PLAN.md
Normal file
211
.planning/phases/04-memory-context-management/04-05-PLAN.md
Normal file
@@ -0,0 +1,211 @@
|
||||
---
|
||||
phase: 04-memory-context-management
|
||||
plan: 05
|
||||
type: execute
|
||||
wave: 1
|
||||
depends_on: ["04-04"]
|
||||
files_modified: ["src/memory/personality/adaptation.py", "src/memory/__init__.py", "src/personality.py"]
|
||||
autonomous: true
|
||||
gap_closure: true
|
||||
|
||||
must_haves:
|
||||
truths:
|
||||
- "Personality layers learn from conversation patterns"
|
||||
- "Personality system integrates with existing personality.py"
|
||||
artifacts:
|
||||
- path: "src/memory/personality/adaptation.py"
|
||||
provides: "Dynamic personality updates"
|
||||
min_lines: 50
|
||||
- path: "src/memory/__init__.py"
|
||||
provides: "Complete MemoryManager with personality learning"
|
||||
exports: ["PersonalityLearner"]
|
||||
- path: "src/personality.py"
|
||||
provides: "Updated personality system with memory integration"
|
||||
min_lines: 20
|
||||
key_links:
|
||||
- from: "src/memory/personality/adaptation.py"
|
||||
to: "src/memory/personality/layer_manager.py"
|
||||
via: "layer updates for adaptation"
|
||||
pattern: "layer_manager\\.update_layer"
|
||||
- from: "src/memory/__init__.py"
|
||||
to: "src/memory/personality/adaptation.py"
|
||||
via: "PersonalityLearner integration"
|
||||
pattern: "PersonalityLearner.*update_personality"
|
||||
- from: "src/personality.py"
|
||||
to: "src/memory/personality/layer_manager.py"
|
||||
via: "personality overlay application"
|
||||
pattern: "layer_manager\\.get_active_layers"
|
||||
---
|
||||
|
||||
<objective>
|
||||
Complete personality learning integration by implementing missing PersonalityAdaptation class and connecting all personality learning components to the MemoryManager and existing personality system.
|
||||
|
||||
Purpose: Close the personality learning integration gap identified in verification
|
||||
Output: Working personality learning system fully integrated with memory and personality systems
|
||||
</objective>
|
||||
|
||||
<execution_context>
|
||||
@~/.opencode/get-shit-done/workflows/execute-plan.md
|
||||
@~/.opencode/get-shit-done/templates/summary.md
|
||||
</execution_context>
|
||||
|
||||
<context>
|
||||
@.planning/phases/04-memory-context-management/04-CONTEXT.md
|
||||
@.planning/phases/04-memory-context-management/04-RESEARCH.md
|
||||
@.planning/phases/04-memory-context-management/04-memory-context-management-VERIFICATION.md
|
||||
|
||||
# Reference existing personality components
|
||||
@src/memory/personality/pattern_extractor.py
|
||||
@src/memory/personality/layer_manager.py
|
||||
@src/resource/personality.py
|
||||
|
||||
# Reference memory manager
|
||||
@src/memory/__init__.py
|
||||
</context>
|
||||
|
||||
<tasks>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 1: Implement PersonalityAdaptation class</name>
|
||||
<files>src/memory/personality/adaptation.py</files>
|
||||
<action>
|
||||
Create src/memory/personality/adaptation.py with PersonalityAdaptation class to close the missing file gap:
|
||||
|
||||
1. PersonalityAdaptation class with time-weighted learning:
|
||||
- update_personality_layer(patterns, layer_id, adaptation_rate)
|
||||
- calculate_adaptation_rate(conversation_history, user_feedback)
|
||||
- apply_stability_controls(proposed_changes, current_state)
|
||||
- integrate_user_feedback(feed_data, layer_weights)
|
||||
|
||||
2. Time-weighted learning implementation:
|
||||
- Recent conversations have less influence (exponential decay)
|
||||
- Historical patterns provide stable baseline
|
||||
- Prevent rapid personality swings with rate limiting
|
||||
- Confidence scoring for pattern reliability
|
||||
|
||||
3. Stability controls:
|
||||
- Maximum change per update (e.g., 10% weight shift)
|
||||
- Cooling period between major adaptations
|
||||
- Core value protection (certain aspects never change)
|
||||
- Reversion triggers for unwanted changes
|
||||
|
||||
4. Integration methods:
|
||||
- import_pattern_data(pattern_extractor, conversation_range)
|
||||
- export_layer_config(layer_manager, output_format)
|
||||
- validate_layer_consistency(layers, core_personality)
|
||||
|
||||
5. Configuration and persistence:
|
||||
- Learning rate configuration (slow/medium/fast)
|
||||
- Adaptation history tracking
|
||||
- Rollback capability for problematic changes
|
||||
- Integration with existing memory storage
|
||||
|
||||
Follow existing error handling patterns from layer_manager.py. Use similar data structures and method signatures for consistency.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.personality.adaptation import PersonalityAdaptation; pa = PersonalityAdaptation(); print('PersonalityAdaptation created successfully')"</verify>
|
||||
<done>PersonalityAdaptation class provides time-weighted learning with stability controls</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 2: Integrate personality learning with MemoryManager</name>
|
||||
<files>src/memory/__init__.py</files>
|
||||
<action>
|
||||
Update src/memory/__init__.py to integrate personality learning and export PersonalityLearner:
|
||||
|
||||
1. Import PersonalityAdaptation in memory/personality/__init__.py:
|
||||
- Add from .adaptation import PersonalityAdaptation
|
||||
- Update __all__ to include PersonalityAdaptation
|
||||
|
||||
2. Create PersonalityLearner class in MemoryManager:
|
||||
- Combines PatternExtractor, LayerManager, and PersonalityAdaptation
|
||||
- Methods: learn_from_conversations(conversation_range), apply_learning(), get_current_personality()
|
||||
- Learning triggers: after conversations, periodic updates, manual requests
|
||||
|
||||
3. Integration with existing MemoryManager:
|
||||
- Add personality_learner attribute to MemoryManager.__init__
|
||||
- Implement learning_workflow() method for coordinated learning
|
||||
- Add personality data persistence to existing storage
|
||||
- Provide learning controls (enable/disable, rate, triggers)
|
||||
|
||||
4. Export PersonalityLearner from memory/__init__.py:
|
||||
- Add PersonalityLearner to __all__
|
||||
- Ensure it's importable as from src.memory import PersonalityLearner
|
||||
|
||||
5. Learning workflow integration:
|
||||
- Hook into conversation storage for automatic learning triggers
|
||||
- Periodic learning schedule (e.g., daily pattern analysis)
|
||||
- Integration with existing configuration system
|
||||
- Memory usage monitoring for learning processes
|
||||
|
||||
Update existing MemoryManager methods to support personality learning without breaking current functionality. Follow the existing pattern of having feature-specific managers within the main MemoryManager.
|
||||
</action>
|
||||
<verify>python -c "from src.memory import PersonalityLearner; pl = PersonalityLearner(); print('PersonalityLearner imported successfully')"</verify>
|
||||
<done>PersonalityLearner is integrated with MemoryManager and available for import</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 3: Create src/personality.py with memory integration</name>
|
||||
<files>src/personality.py</files>
|
||||
<action>
|
||||
Create src/personality.py to integrate with memory personality learning system:
|
||||
|
||||
1. Core personality system:
|
||||
- Import PersonalityLearner from memory system
|
||||
- Maintain core personality values (immutable)
|
||||
- Apply learned personality layers as overlays
|
||||
- Protect core values from learned modifications
|
||||
|
||||
2. Integration with existing personality:
|
||||
- Import and extend src/resource/personality.py functionality
|
||||
- Add memory integration to existing personality methods
|
||||
- Hybrid system prompt + behavior configuration
|
||||
- Context-aware personality layer activation
|
||||
|
||||
3. Personality application methods:
|
||||
- get_personality_response(context, user_input) -> enhanced_response
|
||||
- apply_personality_layers(base_response, context) -> final_response
|
||||
- get_active_layers(conversation_context) -> List[PersonalityLayer]
|
||||
- validate_personality_consistency(applied_layers) -> bool
|
||||
|
||||
4. Configuration and control:
|
||||
- Learning enable/disable flag
|
||||
- Layer activation rules
|
||||
- Core value protection settings
|
||||
- User feedback integration for personality tuning
|
||||
|
||||
5. Integration points:
|
||||
- Connect to MemoryManager.PersonalityLearner
|
||||
- Use existing personality.py from src/resource as base
|
||||
- Ensure compatibility with existing conversation systems
|
||||
- Provide clear separation between core and learned personality
|
||||
|
||||
Follow the pattern established in src/resource/personality.py but extend it with memory learning integration. Ensure core personality values remain protected while allowing learned layers to enhance responses.
|
||||
</action>
|
||||
<verify>python -c "from src.personality import get_personality_response; print('Personality system integration working')"</verify>
|
||||
<done>src/personality.py integrates with memory learning while protecting core values</done>
|
||||
</task>
|
||||
|
||||
</tasks>
|
||||
|
||||
<verification>
|
||||
After completion, verify:
|
||||
1. PersonalityAdaptation class exists and implements time-weighted learning
|
||||
2. PersonalityLearner is integrated into MemoryManager and exportable
|
||||
3. src/personality.py exists and integrates with memory personality system
|
||||
4. Personality learning workflow connects all components (PatternExtractor -> LayerManager -> PersonalityAdaptation)
|
||||
5. Core personality values are protected from learned modifications
|
||||
6. Learning system can be enabled/disabled through configuration
|
||||
</verification>
|
||||
|
||||
<success_criteria>
|
||||
- Personality learning integration gap is completely closed
|
||||
- All personality components work together as a cohesive system
|
||||
- Personality layers learn from conversation patterns over time
|
||||
- Core personality values remain protected while allowing adaptive learning
|
||||
- Integration follows existing patterns and maintains code consistency
|
||||
- System is ready for testing and eventual user verification
|
||||
</success_criteria>
|
||||
|
||||
<output>
|
||||
After completion, create `.planning/phases/04-memory-context-management/04-05-SUMMARY.md`
|
||||
</output>
|
||||
161
.planning/phases/04-memory-context-management/04-06-PLAN.md
Normal file
161
.planning/phases/04-memory-context-management/04-06-PLAN.md
Normal file
@@ -0,0 +1,161 @@
|
||||
---
|
||||
phase: 04-memory-context-management
|
||||
plan: 06
|
||||
type: execute
|
||||
wave: 1
|
||||
depends_on: ["04-01"]
|
||||
files_modified: ["src/memory/storage/vector_store.py"]
|
||||
autonomous: true
|
||||
gap_closure: true
|
||||
|
||||
must_haves:
|
||||
truths:
|
||||
- "User can search conversations by semantic meaning"
|
||||
artifacts:
|
||||
- path: "src/memory/storage/vector_store.py"
|
||||
provides: "Vector storage and retrieval with sqlite-vec"
|
||||
contains: "search_by_keyword method"
|
||||
contains: "store_embeddings method"
|
||||
key_links:
|
||||
- from: "src/memory/retrieval/semantic_search.py"
|
||||
to: "src/memory/storage/vector_store.py"
|
||||
via: "vector similarity search operations"
|
||||
pattern: "vector_store\\.search_by_keyword"
|
||||
- from: "src/memory/retrieval/semantic_search.py"
|
||||
to: "src/memory/storage/vector_store.py"
|
||||
via: "embedding storage operations"
|
||||
pattern: "vector_store\\.store_embeddings"
|
||||
---
|
||||
|
||||
<objective>
|
||||
Complete VectorStore implementation by adding missing search_by_keyword and store_embeddings methods that are called by SemanticSearch but not implemented.
|
||||
|
||||
Purpose: Close the vector store methods gap to enable full semantic search functionality
|
||||
Output: Complete VectorStore with all required methods for semantic search operations
|
||||
</objective>
|
||||
|
||||
<execution_context>
|
||||
@~/.opencode/get-shit-done/workflows/execute-plan.md
|
||||
@~/.opencode/get-shit-done/templates/summary.md
|
||||
</execution_context>
|
||||
|
||||
<context>
|
||||
@.planning/phases/04-memory-context-management/04-CONTEXT.md
|
||||
@.planning/phases/04-memory-context-management/04-memory-context-management-VERIFICATION.md
|
||||
|
||||
# Reference existing vector store implementation
|
||||
@src/memory/storage/vector_store.py
|
||||
|
||||
# Reference semantic search that calls these methods
|
||||
@src/memory/retrieval/semantic_search.py
|
||||
</context>
|
||||
|
||||
<tasks>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 1: Implement search_by_keyword method in VectorStore</name>
|
||||
<files>src/memory/storage/vector_store.py</files>
|
||||
<action>
|
||||
Add missing search_by_keyword method to VectorStore class to close the verification gap:
|
||||
|
||||
1. search_by_keyword method implementation:
|
||||
- search_by_keyword(self, query: str, limit: int = 10) -> List[Dict]
|
||||
- Perform keyword-based search on message content using FTS if available
|
||||
- Fall back to LIKE queries if FTS not enabled
|
||||
- Return results in same format as vector search for consistency
|
||||
|
||||
2. Keyword search implementation:
|
||||
- Use SQLite FTS (Full-Text Search) if virtual tables exist
|
||||
- Query message_content and conversation_summary fields
|
||||
- Support multiple keywords with AND/OR logic
|
||||
- Rank results by keyword frequency and position
|
||||
|
||||
3. Integration with existing vector operations:
|
||||
- Use same database connection as existing methods
|
||||
- Follow existing error handling patterns
|
||||
- Return results compatible with hybrid_search in SemanticSearch
|
||||
- Include message_id, conversation_id, content, and relevance score
|
||||
|
||||
4. Performance optimizations:
|
||||
- Add appropriate indexes for keyword search if missing
|
||||
- Use query parameters to prevent SQL injection
|
||||
- Limit result sets for performance
|
||||
- Cache frequent keyword queries if beneficial
|
||||
|
||||
5. Method signature matching:
|
||||
- Match the expected signature from semantic_search.py line 248
|
||||
- Return format: List[Dict] with message_id, conversation_id, content, score
|
||||
- Handle edge cases: empty queries, no results, database errors
|
||||
|
||||
The method should be called by SemanticSearch.hybrid_search at line 248. Verify the exact signature and return format by checking semantic_search.py before implementation.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.storage.vector_store import VectorStore; vs = VectorStore(); result = vs.search_by_keyword('test', limit=5); print(f'search_by_keyword returned {len(result)} results')"</verify>
|
||||
<done>VectorStore.search_by_keyword method provides keyword-based search functionality</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 2: Implement store_embeddings method in VectorStore</name>
|
||||
<files>src/memory/storage/vector_store.py</files>
|
||||
<action>
|
||||
Add missing store_embeddings method to VectorStore class to close the verification gap:
|
||||
|
||||
1. store_embeddings method implementation:
|
||||
- store_embeddings(self, embeddings: List[Tuple[str, List[float]]]) -> bool
|
||||
- Batch store multiple embeddings efficiently
|
||||
- Handle conversation_id and message_id associations
|
||||
- Return success/failure status
|
||||
|
||||
2. Embedding storage implementation:
|
||||
- Use existing vec_entries virtual table from current implementation
|
||||
- Insert embeddings with proper rowid mapping to messages
|
||||
- Support batch inserts for performance
|
||||
- Handle embedding dimension validation
|
||||
|
||||
3. Integration with existing storage patterns:
|
||||
- Follow same database connection patterns as other methods
|
||||
- Use existing error handling and transaction management
|
||||
- Coordinate with sqlite_manager for message metadata
|
||||
- Maintain consistency with existing vector storage
|
||||
|
||||
4. Method signature compatibility:
|
||||
- Match expected signature from semantic_search.py line 363
|
||||
- Accept list of (id, embedding) tuples
|
||||
- Return boolean success indicator
|
||||
- Handle partial failures gracefully
|
||||
|
||||
5. Performance and reliability:
|
||||
- Use transactions for batch operations
|
||||
- Validate embedding dimensions before insertion
|
||||
- Handle database constraint violations
|
||||
- Provide detailed error logging for debugging
|
||||
|
||||
The method should be called by SemanticSearch at line 363. Verify the exact signature and expected behavior by checking semantic_search.py before implementation. Ensure compatibility with the existing vec_entries table structure and sqlite-vec extension usage.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.storage.vector_store import VectorStore; import numpy as np; vs = VectorStore(); test_emb = [('test_id', np.random.rand(1536).tolist())]; result = vs.store_embeddings(test_emb); print(f'store_embeddings returned: {result}')"</verify>
|
||||
<done>VectorStore.store_embeddings method provides batch embedding storage functionality</done>
|
||||
</task>
|
||||
|
||||
</tasks>
|
||||
|
||||
<verification>
|
||||
After completion, verify:
|
||||
1. search_by_keyword method exists and is callable from SemanticSearch
|
||||
2. store_embeddings method exists and is callable from SemanticSearch
|
||||
3. Both methods follow the exact signatures expected by semantic_search.py
|
||||
4. Methods integrate properly with existing VectorStore database operations
|
||||
5. SemanticSearch.hybrid_search can now call these methods without errors
|
||||
6. Keyword search returns properly formatted results compatible with vector search
|
||||
</verification>
|
||||
|
||||
<success_criteria>
|
||||
- VectorStore missing methods gap is completely closed
|
||||
- SemanticSearch can perform hybrid search combining keyword and vector search
|
||||
- Methods follow existing VectorStore patterns and error handling
|
||||
- Database operations are efficient and properly transactional
|
||||
- Integration with semantic search is seamless and functional
|
||||
- All anti-patterns related to missing method calls are resolved
|
||||
</success_criteria>
|
||||
|
||||
<output>
|
||||
After completion, create `.planning/phases/04-memory-context-management/04-06-SUMMARY.md`
|
||||
</output>
|
||||
159
.planning/phases/04-memory-context-management/04-07-PLAN.md
Normal file
159
.planning/phases/04-memory-context-management/04-07-PLAN.md
Normal file
@@ -0,0 +1,159 @@
|
||||
---
|
||||
phase: 04-memory-context-management
|
||||
plan: 07
|
||||
type: execute
|
||||
wave: 1
|
||||
depends_on: ["04-01"]
|
||||
files_modified: ["src/memory/storage/sqlite_manager.py"]
|
||||
autonomous: true
|
||||
gap_closure: true
|
||||
|
||||
must_haves:
|
||||
truths:
|
||||
- "Context-aware search prioritizes current topic discussions"
|
||||
artifacts:
|
||||
- path: "src/memory/storage/sqlite_manager.py"
|
||||
provides: "SQLite database operations and schema management"
|
||||
contains: "get_conversation_metadata method"
|
||||
key_links:
|
||||
- from: "src/memory/retrieval/context_aware.py"
|
||||
to: "src/memory/storage/sqlite_manager.py"
|
||||
via: "conversation metadata for topic analysis"
|
||||
pattern: "sqlite_manager\\.get_conversation_metadata"
|
||||
---
|
||||
|
||||
<objective>
|
||||
Complete SQLiteManager by adding missing get_conversation_metadata method to enable ContextAwareSearch topic analysis functionality.
|
||||
|
||||
Purpose: Close the metadata integration gap to enable context-aware search prioritization
|
||||
Output: Complete SQLiteManager with metadata access for topic-based search enhancement
|
||||
</objective>
|
||||
|
||||
<execution_context>
|
||||
@~/.opencode/get-shit-done/workflows/execute-plan.md
|
||||
@~/.opencode/get-shit-done/templates/summary.md
|
||||
</execution_context>
|
||||
|
||||
<context>
|
||||
@.planning/phases/04-memory-context-management/04-CONTEXT.md
|
||||
@.planning/phases/04-memory-context-management/04-memory-context-management-VERIFICATION.md
|
||||
|
||||
# Reference existing sqlite manager implementation
|
||||
@src/memory/storage/sqlite_manager.py
|
||||
|
||||
# Reference context aware search that needs this method
|
||||
@src/memory/retrieval/context_aware.py
|
||||
</context>
|
||||
|
||||
<tasks>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 1: Implement get_conversation_metadata method in SQLiteManager</name>
|
||||
<files>src/memory/storage/sqlite_manager.py</files>
|
||||
<action>
|
||||
Add missing get_conversation_metadata method to SQLiteManager class to close the verification gap:
|
||||
|
||||
1. get_conversation_metadata method implementation:
|
||||
- get_conversation_metadata(self, conversation_ids: List[str]) -> Dict[str, Dict]
|
||||
- Retrieve comprehensive metadata for specified conversations
|
||||
- Include topics, timestamps, message counts, user engagement metrics
|
||||
- Return structured data suitable for topic analysis
|
||||
|
||||
2. Metadata fields to include:
|
||||
- Conversation metadata: title, summary, created_at, updated_at
|
||||
- Topic information: main_topics, topic_frequency, topic_sentiment
|
||||
- Engagement metrics: message_count, user_message_ratio, response_times
|
||||
- Temporal data: time_of_day patterns, day_of_week patterns
|
||||
- Context clues: related_conversations, conversation_chain_position
|
||||
|
||||
3. Database queries for metadata:
|
||||
- Query conversations table for basic metadata
|
||||
- Aggregate message data for engagement metrics
|
||||
- Join with message metadata if available
|
||||
- Calculate topic statistics from existing topic fields
|
||||
- Use existing indexes for efficient querying
|
||||
|
||||
4. Integration with existing SQLiteManager patterns:
|
||||
- Follow same connection and cursor management
|
||||
- Use existing error handling and transaction patterns
|
||||
- Return data in formats compatible with existing methods
|
||||
- Handle missing or incomplete data gracefully
|
||||
|
||||
5. Performance optimizations:
|
||||
- Batch queries when multiple conversation_ids provided
|
||||
- Use appropriate indexes for metadata fields
|
||||
- Cache frequently accessed metadata
|
||||
- Limit result size for large conversation sets
|
||||
|
||||
The method should support the needs identified in ContextAwareSearch for topic analysis. Check context_aware.py to understand the specific metadata requirements and expected return format.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.storage.sqlite_manager import SQLiteManager; sm = SQLiteManager(); result = sm.get_conversation_metadata(['test_id']); print(f'get_conversation_metadata returned: {type(result)} with keys: {list(result.keys()) if result else \"None\"}')"</verify>
|
||||
<done>SQLiteManager.get_conversation_metadata method provides comprehensive conversation metadata</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 2: Integrate metadata access in ContextAwareSearch</name>
|
||||
<files>src/memory/retrieval/context_aware.py</files>
|
||||
<action>
|
||||
Update ContextAwareSearch to use the new get_conversation_metadata method for proper topic analysis:
|
||||
|
||||
1. Import and use sqlite_manager.get_conversation_metadata:
|
||||
- Update imports if needed to access sqlite_manager
|
||||
- Replace any mock or placeholder metadata calls with real method
|
||||
- Integrate metadata results into topic analysis algorithms
|
||||
- Handle missing metadata gracefully
|
||||
|
||||
2. Topic analysis enhancement:
|
||||
- Use real conversation metadata for topic relevance scoring
|
||||
- Incorporate temporal patterns and engagement metrics
|
||||
- Weight recent conversations appropriately in topic matching
|
||||
- Use conversation chains and relationships for context
|
||||
|
||||
3. Context-aware search improvements:
|
||||
- Enhance topic analysis with real metadata
|
||||
- Improve current topic discussion prioritization
|
||||
- Better handle multi-topic conversations
|
||||
- More accurate context relevance scoring
|
||||
|
||||
4. Error handling and fallbacks:
|
||||
- Handle cases where metadata is incomplete or missing
|
||||
- Provide fallback to basic topic analysis
|
||||
- Log metadata access issues for debugging
|
||||
- Maintain search functionality even with metadata failures
|
||||
|
||||
5. Integration verification:
|
||||
- Ensure ContextAwareSearch calls sqlite_manager.get_conversation_metadata
|
||||
- Verify metadata is properly used in topic analysis
|
||||
- Test with various conversation metadata scenarios
|
||||
- Confirm search results improve with real metadata
|
||||
|
||||
Update the existing ContextAwareSearch implementation to leverage the new metadata capability while maintaining backward compatibility and handling edge cases appropriately.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.retrieval.context_aware import ContextAwareSearch; cas = ContextAwareSearch(); print('ContextAwareSearch ready for metadata integration')"</verify>
|
||||
<done>ContextAwareSearch integrates with SQLiteManager metadata for enhanced topic analysis</done>
|
||||
</task>
|
||||
|
||||
</tasks>
|
||||
|
||||
<verification>
|
||||
After completion, verify:
|
||||
1. get_conversation_metadata method exists in SQLiteManager and is callable
|
||||
2. Method returns comprehensive metadata suitable for topic analysis
|
||||
3. ContextAwareSearch successfully calls and uses the metadata method
|
||||
4. Topic analysis is enhanced with real conversation metadata
|
||||
5. Context-aware search results are more accurate with metadata integration
|
||||
6. No broken method calls or missing imports remain
|
||||
</verification>
|
||||
|
||||
<success_criteria>
|
||||
- Metadata integration gap is completely closed
|
||||
- ContextAwareSearch can access conversation metadata for topic analysis
|
||||
- Topic analysis is enhanced with real engagement and temporal data
|
||||
- Current topic discussion prioritization works with real metadata
|
||||
- Integration follows existing patterns and maintains performance
|
||||
- All verification issues related to metadata access are resolved
|
||||
</success_criteria>
|
||||
|
||||
<output>
|
||||
After completion, create `.planning/phases/04-memory-context-management/04-07-SUMMARY.md`
|
||||
</output>
|
||||
Reference in New Issue
Block a user