docs(04): create gap closure plans for memory and context management
Phase 04: Memory & Context Management - 3 gap closure plans to address verification issues - 04-05: Personality learning integration (PersonalityAdaptation, MemoryManager integration, src/personality.py) - 04-06: Vector Store missing methods (search_by_keyword, store_embeddings) - 04-07: Context-aware search metadata integration (get_conversation_metadata) - All gaps from verification report addressed - Updated roadmap to reflect 7 total plans
This commit is contained in:
211
.planning/phases/04-memory-context-management/04-05-PLAN.md
Normal file
211
.planning/phases/04-memory-context-management/04-05-PLAN.md
Normal file
@@ -0,0 +1,211 @@
|
||||
---
|
||||
phase: 04-memory-context-management
|
||||
plan: 05
|
||||
type: execute
|
||||
wave: 1
|
||||
depends_on: ["04-04"]
|
||||
files_modified: ["src/memory/personality/adaptation.py", "src/memory/__init__.py", "src/personality.py"]
|
||||
autonomous: true
|
||||
gap_closure: true
|
||||
|
||||
must_haves:
|
||||
truths:
|
||||
- "Personality layers learn from conversation patterns"
|
||||
- "Personality system integrates with existing personality.py"
|
||||
artifacts:
|
||||
- path: "src/memory/personality/adaptation.py"
|
||||
provides: "Dynamic personality updates"
|
||||
min_lines: 50
|
||||
- path: "src/memory/__init__.py"
|
||||
provides: "Complete MemoryManager with personality learning"
|
||||
exports: ["PersonalityLearner"]
|
||||
- path: "src/personality.py"
|
||||
provides: "Updated personality system with memory integration"
|
||||
min_lines: 20
|
||||
key_links:
|
||||
- from: "src/memory/personality/adaptation.py"
|
||||
to: "src/memory/personality/layer_manager.py"
|
||||
via: "layer updates for adaptation"
|
||||
pattern: "layer_manager\\.update_layer"
|
||||
- from: "src/memory/__init__.py"
|
||||
to: "src/memory/personality/adaptation.py"
|
||||
via: "PersonalityLearner integration"
|
||||
pattern: "PersonalityLearner.*update_personality"
|
||||
- from: "src/personality.py"
|
||||
to: "src/memory/personality/layer_manager.py"
|
||||
via: "personality overlay application"
|
||||
pattern: "layer_manager\\.get_active_layers"
|
||||
---
|
||||
|
||||
<objective>
|
||||
Complete personality learning integration by implementing missing PersonalityAdaptation class and connecting all personality learning components to the MemoryManager and existing personality system.
|
||||
|
||||
Purpose: Close the personality learning integration gap identified in verification
|
||||
Output: Working personality learning system fully integrated with memory and personality systems
|
||||
</objective>
|
||||
|
||||
<execution_context>
|
||||
@~/.opencode/get-shit-done/workflows/execute-plan.md
|
||||
@~/.opencode/get-shit-done/templates/summary.md
|
||||
</execution_context>
|
||||
|
||||
<context>
|
||||
@.planning/phases/04-memory-context-management/04-CONTEXT.md
|
||||
@.planning/phases/04-memory-context-management/04-RESEARCH.md
|
||||
@.planning/phases/04-memory-context-management/04-memory-context-management-VERIFICATION.md
|
||||
|
||||
# Reference existing personality components
|
||||
@src/memory/personality/pattern_extractor.py
|
||||
@src/memory/personality/layer_manager.py
|
||||
@src/resource/personality.py
|
||||
|
||||
# Reference memory manager
|
||||
@src/memory/__init__.py
|
||||
</context>
|
||||
|
||||
<tasks>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 1: Implement PersonalityAdaptation class</name>
|
||||
<files>src/memory/personality/adaptation.py</files>
|
||||
<action>
|
||||
Create src/memory/personality/adaptation.py with PersonalityAdaptation class to close the missing file gap:
|
||||
|
||||
1. PersonalityAdaptation class with time-weighted learning:
|
||||
- update_personality_layer(patterns, layer_id, adaptation_rate)
|
||||
- calculate_adaptation_rate(conversation_history, user_feedback)
|
||||
- apply_stability_controls(proposed_changes, current_state)
|
||||
- integrate_user_feedback(feed_data, layer_weights)
|
||||
|
||||
2. Time-weighted learning implementation:
|
||||
- Recent conversations have less influence (exponential decay)
|
||||
- Historical patterns provide stable baseline
|
||||
- Prevent rapid personality swings with rate limiting
|
||||
- Confidence scoring for pattern reliability
|
||||
|
||||
3. Stability controls:
|
||||
- Maximum change per update (e.g., 10% weight shift)
|
||||
- Cooling period between major adaptations
|
||||
- Core value protection (certain aspects never change)
|
||||
- Reversion triggers for unwanted changes
|
||||
|
||||
4. Integration methods:
|
||||
- import_pattern_data(pattern_extractor, conversation_range)
|
||||
- export_layer_config(layer_manager, output_format)
|
||||
- validate_layer_consistency(layers, core_personality)
|
||||
|
||||
5. Configuration and persistence:
|
||||
- Learning rate configuration (slow/medium/fast)
|
||||
- Adaptation history tracking
|
||||
- Rollback capability for problematic changes
|
||||
- Integration with existing memory storage
|
||||
|
||||
Follow existing error handling patterns from layer_manager.py. Use similar data structures and method signatures for consistency.
|
||||
</action>
|
||||
<verify>python -c "from src.memory.personality.adaptation import PersonalityAdaptation; pa = PersonalityAdaptation(); print('PersonalityAdaptation created successfully')"</verify>
|
||||
<done>PersonalityAdaptation class provides time-weighted learning with stability controls</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 2: Integrate personality learning with MemoryManager</name>
|
||||
<files>src/memory/__init__.py</files>
|
||||
<action>
|
||||
Update src/memory/__init__.py to integrate personality learning and export PersonalityLearner:
|
||||
|
||||
1. Import PersonalityAdaptation in memory/personality/__init__.py:
|
||||
- Add from .adaptation import PersonalityAdaptation
|
||||
- Update __all__ to include PersonalityAdaptation
|
||||
|
||||
2. Create PersonalityLearner class in MemoryManager:
|
||||
- Combines PatternExtractor, LayerManager, and PersonalityAdaptation
|
||||
- Methods: learn_from_conversations(conversation_range), apply_learning(), get_current_personality()
|
||||
- Learning triggers: after conversations, periodic updates, manual requests
|
||||
|
||||
3. Integration with existing MemoryManager:
|
||||
- Add personality_learner attribute to MemoryManager.__init__
|
||||
- Implement learning_workflow() method for coordinated learning
|
||||
- Add personality data persistence to existing storage
|
||||
- Provide learning controls (enable/disable, rate, triggers)
|
||||
|
||||
4. Export PersonalityLearner from memory/__init__.py:
|
||||
- Add PersonalityLearner to __all__
|
||||
- Ensure it's importable as from src.memory import PersonalityLearner
|
||||
|
||||
5. Learning workflow integration:
|
||||
- Hook into conversation storage for automatic learning triggers
|
||||
- Periodic learning schedule (e.g., daily pattern analysis)
|
||||
- Integration with existing configuration system
|
||||
- Memory usage monitoring for learning processes
|
||||
|
||||
Update existing MemoryManager methods to support personality learning without breaking current functionality. Follow the existing pattern of having feature-specific managers within the main MemoryManager.
|
||||
</action>
|
||||
<verify>python -c "from src.memory import PersonalityLearner; pl = PersonalityLearner(); print('PersonalityLearner imported successfully')"</verify>
|
||||
<done>PersonalityLearner is integrated with MemoryManager and available for import</done>
|
||||
</task>
|
||||
|
||||
<task type="auto">
|
||||
<name>Task 3: Create src/personality.py with memory integration</name>
|
||||
<files>src/personality.py</files>
|
||||
<action>
|
||||
Create src/personality.py to integrate with memory personality learning system:
|
||||
|
||||
1. Core personality system:
|
||||
- Import PersonalityLearner from memory system
|
||||
- Maintain core personality values (immutable)
|
||||
- Apply learned personality layers as overlays
|
||||
- Protect core values from learned modifications
|
||||
|
||||
2. Integration with existing personality:
|
||||
- Import and extend src/resource/personality.py functionality
|
||||
- Add memory integration to existing personality methods
|
||||
- Hybrid system prompt + behavior configuration
|
||||
- Context-aware personality layer activation
|
||||
|
||||
3. Personality application methods:
|
||||
- get_personality_response(context, user_input) -> enhanced_response
|
||||
- apply_personality_layers(base_response, context) -> final_response
|
||||
- get_active_layers(conversation_context) -> List[PersonalityLayer]
|
||||
- validate_personality_consistency(applied_layers) -> bool
|
||||
|
||||
4. Configuration and control:
|
||||
- Learning enable/disable flag
|
||||
- Layer activation rules
|
||||
- Core value protection settings
|
||||
- User feedback integration for personality tuning
|
||||
|
||||
5. Integration points:
|
||||
- Connect to MemoryManager.PersonalityLearner
|
||||
- Use existing personality.py from src/resource as base
|
||||
- Ensure compatibility with existing conversation systems
|
||||
- Provide clear separation between core and learned personality
|
||||
|
||||
Follow the pattern established in src/resource/personality.py but extend it with memory learning integration. Ensure core personality values remain protected while allowing learned layers to enhance responses.
|
||||
</action>
|
||||
<verify>python -c "from src.personality import get_personality_response; print('Personality system integration working')"</verify>
|
||||
<done>src/personality.py integrates with memory learning while protecting core values</done>
|
||||
</task>
|
||||
|
||||
</tasks>
|
||||
|
||||
<verification>
|
||||
After completion, verify:
|
||||
1. PersonalityAdaptation class exists and implements time-weighted learning
|
||||
2. PersonalityLearner is integrated into MemoryManager and exportable
|
||||
3. src/personality.py exists and integrates with memory personality system
|
||||
4. Personality learning workflow connects all components (PatternExtractor -> LayerManager -> PersonalityAdaptation)
|
||||
5. Core personality values are protected from learned modifications
|
||||
6. Learning system can be enabled/disabled through configuration
|
||||
</verification>
|
||||
|
||||
<success_criteria>
|
||||
- Personality learning integration gap is completely closed
|
||||
- All personality components work together as a cohesive system
|
||||
- Personality layers learn from conversation patterns over time
|
||||
- Core personality values remain protected while allowing adaptive learning
|
||||
- Integration follows existing patterns and maintains code consistency
|
||||
- System is ready for testing and eventual user verification
|
||||
</success_criteria>
|
||||
|
||||
<output>
|
||||
After completion, create `.planning/phases/04-memory-context-management/04-05-SUMMARY.md`
|
||||
</output>
|
||||
Reference in New Issue
Block a user