docs: document and configure MCP tool integration
Some checks failed
Discord Webhook / git (push) Has been cancelled
Some checks failed
Discord Webhook / git (push) Has been cancelled
- Create comprehensive MCP.md documenting all available tools: * Hugging Face Hub (models, datasets, papers, spaces, docs) * Web search and fetch for research * Code tools (Bash, Git, file ops) * Claude Code (GSD) workflow agents - Map MCP usage to specific phases: * Phase 1: Model discovery (Mistral, Llama, quantized options) * Phase 2: Safety research (sandboxing, verification papers) * Phase 5: Conversation datasets and papers * Phase 12: Voice visualization models and spaces * Phase 13: Avatar generation tools and research * Phase 14: Mobile inference frameworks and patterns - Update config.json with MCP settings: * Enable Hugging Face (mystiatech authenticated) * Enable WebSearch for current practices * Set default result limits - Update PROJECT.md constraints to document MCP enablement Research phases will leverage MCPs extensively for optimal library/model selection, architecture patterns, and best practices.
This commit is contained in:
220
.planning/MCP.md
Normal file
220
.planning/MCP.md
Normal file
@@ -0,0 +1,220 @@
|
||||
# Available Tools & MCP Integration
|
||||
|
||||
This document lists all available tools and MCP (Model Context Protocol) servers that Mai development can leverage.
|
||||
|
||||
## Hugging Face Hub Integration
|
||||
|
||||
**Status**: Authenticated as `mystiatech`
|
||||
|
||||
### Tools Available
|
||||
|
||||
#### Model Discovery
|
||||
- `mcp__claude_ai_Hugging_Face__model_search` — Search ML models by task, author, library, trending
|
||||
- `mcp__claude_ai_Hugging_Face__hub_repo_details` — Get detailed info on any model, dataset, or space
|
||||
|
||||
**Use Cases:**
|
||||
- Phase 1: Discover quantized models for local inference (Mistral, Llama, etc.)
|
||||
- Phase 12: Find audio/voice models for visualization
|
||||
- Phase 13: Find avatar/animation models (VRoid compatible options)
|
||||
- Phase 14: Research Android-compatible model formats
|
||||
|
||||
#### Dataset Discovery
|
||||
- `mcp__claude_ai_Hugging_Face__dataset_search` — Find datasets by task, author, tags, trending
|
||||
- Search filters: language, size, task categories
|
||||
|
||||
**Use Cases:**
|
||||
- Phase 4: Training data research for memory compression
|
||||
- Phase 5: Conversation quality datasets
|
||||
- Phase 12: Audio visualization datasets
|
||||
|
||||
#### Research Papers
|
||||
- `mcp__claude_ai_Hugging_Face__paper_search` — Search ML research papers with abstracts
|
||||
|
||||
**Use Cases:**
|
||||
- Phase 2: Safety and sandboxing research papers
|
||||
- Phase 4: Memory system and RAG papers
|
||||
- Phase 5: Conversational AI and reasoning papers
|
||||
- Phase 7: Self-improvement and code generation papers
|
||||
|
||||
#### Spaces & Interactive Models
|
||||
- `mcp__claude_ai_Hugging_Face__space_search` — Discover Hugging Face Spaces (demos)
|
||||
- `mcp__claude_ai_Hugging_Face__dynamic_space` — Run interactive tasks (Image Gen, OCR, TTS, etc.)
|
||||
|
||||
**Use Cases:**
|
||||
- Phase 12: Voice/audio visualization demos
|
||||
- Phase 13: Avatar generation or manipulation
|
||||
- Phase 14: Android UI pattern research
|
||||
|
||||
#### Documentation
|
||||
- `mcp__claude_ai_Hugging_Face__hf_doc_search` — Search HF docs and guides
|
||||
- `mcp__claude_ai_Hugging_Face__hf_doc_fetch` — Fetch full documentation pages
|
||||
|
||||
**Use Cases:**
|
||||
- Phase 1: LMStudio/Ollama integration documentation
|
||||
- Phase 5: Transformers library best practices
|
||||
- Phase 14: Mobile inference frameworks (ONNX Runtime, TensorFlow Lite)
|
||||
|
||||
#### Account Info
|
||||
- `mcp__claude_ai_Hugging_Face__hf_whoami` — Get authenticated user info
|
||||
|
||||
## Web Research
|
||||
|
||||
### Tools Available
|
||||
- `WebSearch` — Search the web for current information (2026 context)
|
||||
- `WebFetch` — Fetch and analyze specific URLs
|
||||
|
||||
**Use Cases:**
|
||||
- Research current best practices in AI safety (Phase 2)
|
||||
- Find Android development patterns (Phase 14)
|
||||
- Discover voice visualization libraries (Phase 12)
|
||||
- Research avatar systems (Phase 13)
|
||||
- Find Discord bot best practices (Phase 10)
|
||||
|
||||
## Code & Repository Tools
|
||||
|
||||
### Tools Available
|
||||
- `Bash` — Execute terminal commands (git, npm, python, etc.)
|
||||
- `Glob` — Fast file pattern matching
|
||||
- `Grep` — Ripgrep-based content search
|
||||
- `Read` — Read file contents
|
||||
- `Edit` — Edit files with string replacement
|
||||
- `Write` — Create new files
|
||||
|
||||
**Use Cases:**
|
||||
- All phases: Create and manage project structure
|
||||
- All phases: Execute tests and build commands
|
||||
- All phases: Manage git commits and history
|
||||
|
||||
## Claude Code (GSD) Workflow
|
||||
|
||||
### Orchestrators Available
|
||||
- `/gsd:new-project` — Initialize project
|
||||
- `/gsd:plan-phase N` — Create detailed phase plans
|
||||
- `/gsd:execute-phase N` — Execute phase with atomic commits
|
||||
- `/gsd:discuss-phase N` — Gather phase context
|
||||
- `/gsd:verify-work` — User acceptance testing
|
||||
|
||||
### Specialized Agents
|
||||
- `gsd-project-researcher` — Domain research (stack, features, architecture, pitfalls)
|
||||
- `gsd-phase-researcher` — Phase-specific research
|
||||
- `gsd-codebase-mapper` — Analyze and document existing code
|
||||
- `gsd-planner` — Create executable phase plans
|
||||
- `gsd-executor` — Execute plans with state management
|
||||
- `gsd-verifier` — Verify deliverables match requirements
|
||||
- `gsd-debugger` — Systematic debugging with checkpoints
|
||||
|
||||
## How to Use MCPs in Development
|
||||
|
||||
### In Phase Planning
|
||||
When creating `/gsd:plan-phase N`:
|
||||
- Researchers can use Hugging Face tools to discover libraries and models
|
||||
- Use WebSearch for current best practices
|
||||
- Query papers for architectural patterns
|
||||
|
||||
### In Phase Execution
|
||||
When running `/gsd:execute-phase N`:
|
||||
- Download models from Hugging Face
|
||||
- Use WebFetch for documentation
|
||||
- Run Spaces for prototyping UI patterns
|
||||
|
||||
### Example Usage by Phase
|
||||
|
||||
**Phase 1: Model Interface**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__model_search
|
||||
Query: "quantized models for local inference"
|
||||
→ Find Mistral, Llama, TinyLlama options
|
||||
|
||||
- mcp__claude_ai_Hugging_Face__hf_doc_fetch
|
||||
→ Get Hugging Face Transformers documentation
|
||||
|
||||
- WebSearch
|
||||
→ Latest LMStudio/Ollama integration patterns
|
||||
```
|
||||
|
||||
**Phase 2: Safety System**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__paper_search
|
||||
Query: "code sandboxing, safety verification"
|
||||
→ Find relevant research papers
|
||||
|
||||
- WebSearch
|
||||
→ Docker security best practices
|
||||
```
|
||||
|
||||
**Phase 5: Conversation Engine**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__dataset_search
|
||||
Query: "conversation quality, multi-turn dialogue"
|
||||
|
||||
- mcp__claude_ai_Hugging_Face__paper_search
|
||||
Query: "conversational AI, context management"
|
||||
```
|
||||
|
||||
**Phase 12: Voice Visualization**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__space_search
|
||||
Query: "audio visualization, waveform display"
|
||||
→ Find working demos
|
||||
|
||||
- mcp__claude_ai_Hugging_Face__model_search
|
||||
Query: "speech recognition, audio models"
|
||||
```
|
||||
|
||||
**Phase 13: Desktop Avatar**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__space_search
|
||||
Query: "avatar generation, VRoid, character animation"
|
||||
|
||||
- WebSearch
|
||||
→ VRoid SDK documentation
|
||||
→ Avatar animation libraries
|
||||
```
|
||||
|
||||
**Phase 14: Android App**
|
||||
```
|
||||
- mcp__claude_ai_Hugging_Face__model_search
|
||||
Query: "mobile inference, quantized models, ONNX"
|
||||
|
||||
- WebSearch
|
||||
→ Kotlin ML Kit documentation
|
||||
→ TensorFlow Lite best practices
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
Add to `.planning/config.json` to enable MCP usage:
|
||||
|
||||
```json
|
||||
{
|
||||
"mcp": {
|
||||
"huggingface": {
|
||||
"enabled": true,
|
||||
"authenticated_user": "mystiatech",
|
||||
"default_result_limit": 10
|
||||
},
|
||||
"web_search": {
|
||||
"enabled": true,
|
||||
"domain_restrictions": []
|
||||
},
|
||||
"code_tools": {
|
||||
"enabled": true
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Research Output Format
|
||||
|
||||
When researchers use MCPs, they produce:
|
||||
- `.planning/research/STACK.md` — Technologies and libraries
|
||||
- `.planning/research/FEATURES.md` — Capabilities and patterns
|
||||
- `.planning/research/ARCHITECTURE.md` — System design patterns
|
||||
- `.planning/research/PITFALLS.md` — Common mistakes and solutions
|
||||
|
||||
These inform phase planning and implementation.
|
||||
|
||||
---
|
||||
|
||||
**Updated: 2026-01-26**
|
||||
**Next Review: When new MCP servers become available**
|
||||
@@ -113,7 +113,7 @@ Mai is a real collaborator, not a tool. She learns from you, improves herself, h
|
||||
|
||||
**Why this matters:** Current AI systems are static, sterile, and don't actually learn. Users have to explain context every time. Mai is different — she has continuity, personality, agency, and actually improves over time. Starting with a solid local framework means she can eventually run anywhere without cloud dependency.
|
||||
|
||||
**Technical environment:** Python-based, local models via LMStudio, git for version control of her own code, Discord API for chat, lightweight local storage for memory. Eventually targeting bare metal on low-end devices.
|
||||
**Technical environment:** Python-based, local models via LMStudio/Ollama, git for version control, Discord API for chat, lightweight local storage for memory. Development leverages Hugging Face Hub for model/dataset discovery and research, WebSearch for current best practices. Eventually targeting bare metal on low-end devices.
|
||||
|
||||
**User feedback theme:** Traditional chatbots feel rigid and repetitive. Mai should feel like talking to an actual person who gets better at understanding you.
|
||||
|
||||
@@ -130,6 +130,7 @@ Mai is a real collaborator, not a tool. She learns from you, improves herself, h
|
||||
- **Sync consistency**: Desktop and Android instances maintain synchronized state without server
|
||||
- **OpenCode-driven**: All development phases executed through Claude Code (GSD workflow)
|
||||
- **Python venv**: `.venv` virtual environment for all Python dependencies
|
||||
- **MCP-enabled**: Leverages Hugging Face Hub, WebSearch, and code tools for research and implementation
|
||||
|
||||
## Key Decisions
|
||||
|
||||
|
||||
@@ -13,5 +13,27 @@
|
||||
"auto_push": true,
|
||||
"push_tags": true,
|
||||
"remote": "master"
|
||||
},
|
||||
"mcp": {
|
||||
"huggingface": {
|
||||
"enabled": true,
|
||||
"authenticated_user": "mystiatech",
|
||||
"default_result_limit": 10,
|
||||
"use_for": [
|
||||
"model_discovery",
|
||||
"dataset_research",
|
||||
"paper_search",
|
||||
"documentation_lookup"
|
||||
]
|
||||
},
|
||||
"web_research": {
|
||||
"enabled": true,
|
||||
"use_for": [
|
||||
"current_practices",
|
||||
"library_research",
|
||||
"architecture_patterns",
|
||||
"security_best_practices"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user