docs: document and configure MCP tool integration
Some checks failed
Discord Webhook / git (push) Has been cancelled

- Create comprehensive MCP.md documenting all available tools:
  * Hugging Face Hub (models, datasets, papers, spaces, docs)
  * Web search and fetch for research
  * Code tools (Bash, Git, file ops)
  * Claude Code (GSD) workflow agents

- Map MCP usage to specific phases:
  * Phase 1: Model discovery (Mistral, Llama, quantized options)
  * Phase 2: Safety research (sandboxing, verification papers)
  * Phase 5: Conversation datasets and papers
  * Phase 12: Voice visualization models and spaces
  * Phase 13: Avatar generation tools and research
  * Phase 14: Mobile inference frameworks and patterns

- Update config.json with MCP settings:
  * Enable Hugging Face (mystiatech authenticated)
  * Enable WebSearch for current practices
  * Set default result limits

- Update PROJECT.md constraints to document MCP enablement

Research phases will leverage MCPs extensively for optimal
library/model selection, architecture patterns, and best practices.
This commit is contained in:
Mai Development
2026-01-26 23:24:00 -05:00
parent 3861b86287
commit 53fb8544fe
3 changed files with 244 additions and 1 deletions

220
.planning/MCP.md Normal file
View File

@@ -0,0 +1,220 @@
# Available Tools & MCP Integration
This document lists all available tools and MCP (Model Context Protocol) servers that Mai development can leverage.
## Hugging Face Hub Integration
**Status**: Authenticated as `mystiatech`
### Tools Available
#### Model Discovery
- `mcp__claude_ai_Hugging_Face__model_search` — Search ML models by task, author, library, trending
- `mcp__claude_ai_Hugging_Face__hub_repo_details` — Get detailed info on any model, dataset, or space
**Use Cases:**
- Phase 1: Discover quantized models for local inference (Mistral, Llama, etc.)
- Phase 12: Find audio/voice models for visualization
- Phase 13: Find avatar/animation models (VRoid compatible options)
- Phase 14: Research Android-compatible model formats
#### Dataset Discovery
- `mcp__claude_ai_Hugging_Face__dataset_search` — Find datasets by task, author, tags, trending
- Search filters: language, size, task categories
**Use Cases:**
- Phase 4: Training data research for memory compression
- Phase 5: Conversation quality datasets
- Phase 12: Audio visualization datasets
#### Research Papers
- `mcp__claude_ai_Hugging_Face__paper_search` — Search ML research papers with abstracts
**Use Cases:**
- Phase 2: Safety and sandboxing research papers
- Phase 4: Memory system and RAG papers
- Phase 5: Conversational AI and reasoning papers
- Phase 7: Self-improvement and code generation papers
#### Spaces & Interactive Models
- `mcp__claude_ai_Hugging_Face__space_search` — Discover Hugging Face Spaces (demos)
- `mcp__claude_ai_Hugging_Face__dynamic_space` — Run interactive tasks (Image Gen, OCR, TTS, etc.)
**Use Cases:**
- Phase 12: Voice/audio visualization demos
- Phase 13: Avatar generation or manipulation
- Phase 14: Android UI pattern research
#### Documentation
- `mcp__claude_ai_Hugging_Face__hf_doc_search` — Search HF docs and guides
- `mcp__claude_ai_Hugging_Face__hf_doc_fetch` — Fetch full documentation pages
**Use Cases:**
- Phase 1: LMStudio/Ollama integration documentation
- Phase 5: Transformers library best practices
- Phase 14: Mobile inference frameworks (ONNX Runtime, TensorFlow Lite)
#### Account Info
- `mcp__claude_ai_Hugging_Face__hf_whoami` — Get authenticated user info
## Web Research
### Tools Available
- `WebSearch` — Search the web for current information (2026 context)
- `WebFetch` — Fetch and analyze specific URLs
**Use Cases:**
- Research current best practices in AI safety (Phase 2)
- Find Android development patterns (Phase 14)
- Discover voice visualization libraries (Phase 12)
- Research avatar systems (Phase 13)
- Find Discord bot best practices (Phase 10)
## Code & Repository Tools
### Tools Available
- `Bash` — Execute terminal commands (git, npm, python, etc.)
- `Glob` — Fast file pattern matching
- `Grep` — Ripgrep-based content search
- `Read` — Read file contents
- `Edit` — Edit files with string replacement
- `Write` — Create new files
**Use Cases:**
- All phases: Create and manage project structure
- All phases: Execute tests and build commands
- All phases: Manage git commits and history
## Claude Code (GSD) Workflow
### Orchestrators Available
- `/gsd:new-project` — Initialize project
- `/gsd:plan-phase N` — Create detailed phase plans
- `/gsd:execute-phase N` — Execute phase with atomic commits
- `/gsd:discuss-phase N` — Gather phase context
- `/gsd:verify-work` — User acceptance testing
### Specialized Agents
- `gsd-project-researcher` — Domain research (stack, features, architecture, pitfalls)
- `gsd-phase-researcher` — Phase-specific research
- `gsd-codebase-mapper` — Analyze and document existing code
- `gsd-planner` — Create executable phase plans
- `gsd-executor` — Execute plans with state management
- `gsd-verifier` — Verify deliverables match requirements
- `gsd-debugger` — Systematic debugging with checkpoints
## How to Use MCPs in Development
### In Phase Planning
When creating `/gsd:plan-phase N`:
- Researchers can use Hugging Face tools to discover libraries and models
- Use WebSearch for current best practices
- Query papers for architectural patterns
### In Phase Execution
When running `/gsd:execute-phase N`:
- Download models from Hugging Face
- Use WebFetch for documentation
- Run Spaces for prototyping UI patterns
### Example Usage by Phase
**Phase 1: Model Interface**
```
- mcp__claude_ai_Hugging_Face__model_search
Query: "quantized models for local inference"
→ Find Mistral, Llama, TinyLlama options
- mcp__claude_ai_Hugging_Face__hf_doc_fetch
→ Get Hugging Face Transformers documentation
- WebSearch
→ Latest LMStudio/Ollama integration patterns
```
**Phase 2: Safety System**
```
- mcp__claude_ai_Hugging_Face__paper_search
Query: "code sandboxing, safety verification"
→ Find relevant research papers
- WebSearch
→ Docker security best practices
```
**Phase 5: Conversation Engine**
```
- mcp__claude_ai_Hugging_Face__dataset_search
Query: "conversation quality, multi-turn dialogue"
- mcp__claude_ai_Hugging_Face__paper_search
Query: "conversational AI, context management"
```
**Phase 12: Voice Visualization**
```
- mcp__claude_ai_Hugging_Face__space_search
Query: "audio visualization, waveform display"
→ Find working demos
- mcp__claude_ai_Hugging_Face__model_search
Query: "speech recognition, audio models"
```
**Phase 13: Desktop Avatar**
```
- mcp__claude_ai_Hugging_Face__space_search
Query: "avatar generation, VRoid, character animation"
- WebSearch
→ VRoid SDK documentation
→ Avatar animation libraries
```
**Phase 14: Android App**
```
- mcp__claude_ai_Hugging_Face__model_search
Query: "mobile inference, quantized models, ONNX"
- WebSearch
→ Kotlin ML Kit documentation
→ TensorFlow Lite best practices
```
## Configuration
Add to `.planning/config.json` to enable MCP usage:
```json
{
"mcp": {
"huggingface": {
"enabled": true,
"authenticated_user": "mystiatech",
"default_result_limit": 10
},
"web_search": {
"enabled": true,
"domain_restrictions": []
},
"code_tools": {
"enabled": true
}
}
}
```
## Research Output Format
When researchers use MCPs, they produce:
- `.planning/research/STACK.md` — Technologies and libraries
- `.planning/research/FEATURES.md` — Capabilities and patterns
- `.planning/research/ARCHITECTURE.md` — System design patterns
- `.planning/research/PITFALLS.md` — Common mistakes and solutions
These inform phase planning and implementation.
---
**Updated: 2026-01-26**
**Next Review: When new MCP servers become available**

View File

@@ -113,7 +113,7 @@ Mai is a real collaborator, not a tool. She learns from you, improves herself, h
**Why this matters:** Current AI systems are static, sterile, and don't actually learn. Users have to explain context every time. Mai is different — she has continuity, personality, agency, and actually improves over time. Starting with a solid local framework means she can eventually run anywhere without cloud dependency.
**Technical environment:** Python-based, local models via LMStudio, git for version control of her own code, Discord API for chat, lightweight local storage for memory. Eventually targeting bare metal on low-end devices.
**Technical environment:** Python-based, local models via LMStudio/Ollama, git for version control, Discord API for chat, lightweight local storage for memory. Development leverages Hugging Face Hub for model/dataset discovery and research, WebSearch for current best practices. Eventually targeting bare metal on low-end devices.
**User feedback theme:** Traditional chatbots feel rigid and repetitive. Mai should feel like talking to an actual person who gets better at understanding you.
@@ -130,6 +130,7 @@ Mai is a real collaborator, not a tool. She learns from you, improves herself, h
- **Sync consistency**: Desktop and Android instances maintain synchronized state without server
- **OpenCode-driven**: All development phases executed through Claude Code (GSD workflow)
- **Python venv**: `.venv` virtual environment for all Python dependencies
- **MCP-enabled**: Leverages Hugging Face Hub, WebSearch, and code tools for research and implementation
## Key Decisions

View File

@@ -13,5 +13,27 @@
"auto_push": true,
"push_tags": true,
"remote": "master"
},
"mcp": {
"huggingface": {
"enabled": true,
"authenticated_user": "mystiatech",
"default_result_limit": 10,
"use_for": [
"model_discovery",
"dataset_research",
"paper_search",
"documentation_lookup"
]
},
"web_research": {
"enabled": true,
"use_for": [
"current_practices",
"library_research",
"architecture_patterns",
"security_best_practices"
]
}
}
}