Files
Mai/.planning/phases/04-memory-context-management/PLANNING-COMPLETE.txt
Mai Development d082ddc220 fix(04-GC-01): test-personality-learner-init
Verify PersonalityLearner instantiation works correctly after AdaptationRate import fix. Tests confirm no NameError occurs.

Co-Authored-By: Claude Haiku 4.5 <noreply@anthropic.com>
2026-01-28 19:17:53 -05:00

145 lines
5.4 KiB
Plaintext

================================================================================
PHASE 4 GAP CLOSURE PLANNING - COMPLETE
================================================================================
Date: 2026-01-28
Mode: Gap Closure (2 critical blockers identified and planned)
Status: READY FOR EXECUTION
================================================================================
CRITICAL GAPS IDENTIFIED
================================================================================
Gap 1: Missing AdaptationRate Import
File: src/memory/__init__.py
Cause: AdaptationRate enum used but not imported
Impact: PersonalityLearner cannot be instantiated
Severity: CRITICAL - BLOCKING
Gap 2: Missing SQLiteManager Methods
File: src/memory/storage/sqlite_manager.py
Missing: get_conversations_by_date_range(), get_conversation_messages()
Impact: Personality learning pipeline cannot retrieve conversation data
Severity: CRITICAL - BLOCKING
================================================================================
GAP CLOSURE PLANS CREATED
================================================================================
04-GC-01-PLAN.md
Title: Fix PersonalityLearner Initialization
Wave: 1
Dependencies: None
Files: src/memory/__init__.py
Tasks: 3 (add import, verify exports, test initialization)
04-GC-02-PLAN.md
Title: Implement Missing Methods for Personality Learning Pipeline
Wave: 1
Dependencies: 04-GC-01 (soft)
Files: src/memory/storage/sqlite_manager.py, tests/test_personality_learning.py
Tasks: 4 (implement methods, verify integration, test end-to-end)
================================================================================
EXECUTION SEQUENCE
================================================================================
Phase 1 - Sequential or Parallel Execution:
1. Execute 04-GC-01-PLAN.md
2. Execute 04-GC-02-PLAN.md
Phase 2 - Verification:
3. Run integration tests
4. Verify all must-haves checked
5. Confirm "Personality layers learn from conversation patterns" requirement
================================================================================
MUST-HAVES SUMMARY
================================================================================
04-GC-01: AdaptationRate Import
[ ] AdaptationRate imported in __init__.py
[ ] AdaptationRate in __all__ export list
[ ] PersonalityLearner instantiation works
[ ] All config values (slow/medium/fast) work
[ ] No NameError with AdaptationRate
04-GC-02: SQLiteManager Methods
[ ] get_conversations_by_date_range() implemented
[ ] get_conversation_messages() implemented
[ ] Methods handle edge cases
[ ] Integration tests created
[ ] learn_from_conversations() executes
[ ] Patterns extracted successfully
[ ] Layers created from patterns
================================================================================
SUPPORTING DOCUMENTS
================================================================================
GAP-CLOSURE-SUMMARY.md
- Detailed gap analysis
- Traceability to requirements
- Risk assessment
- Integration points
04-GC-01-PLAN.md
- Task 1: Add missing import
- Task 2: Verify import chain
- Task 3: Test initialization
04-GC-02-PLAN.md
- Task 1: Implement get_conversations_by_date_range()
- Task 2: Implement get_conversation_messages()
- Task 3: Verify method integration
- Task 4: Test personality learning end-to-end
================================================================================
KEY FINDINGS
================================================================================
1. extract_conversation_patterns() method EXISTS
- Located in src/memory/personality/pattern_extractor.py (lines 842-890)
- Method signature and implementation are correct
- Method works properly when called with message list
2. Primary blocker is import issue
- AdaptationRate not imported causes immediate NameError
- This prevents PersonalityLearner from being created at all
- Blocks access to pattern_extractor and other components
3. Secondary blocker is missing data retrieval methods
- get_conversations_by_date_range() - needed for learn_from_conversations()
- get_conversation_messages() - needed to extract patterns from conversations
4. All supporting infrastructure exists
- PersonalityAdaptation class: complete (701 lines)
- LayerManager: complete
- Pattern extractors: complete
- Database schema: supports required queries
================================================================================
VERIFICATION PATHWAY
================================================================================
After execution, the requirement:
"Personality layers learn from conversation patterns"
Will progress from: FAILED/BLOCKED
To: VERIFIED
Following the chain:
1. AdaptationRate import fixed → PersonalityLearner can instantiate
2. SQLiteManager methods added → Data retrieval pipeline works
3. learn_from_conversations() executes → Patterns extracted
4. Personality layers created → Requirement verified
================================================================================
READY FOR EXECUTION
================================================================================
All planning complete. Two focused gap closure plans ready for immediate execution.
No additional research or investigation needed.
Next step: Execute 04-GC-01-PLAN.md and 04-GC-02-PLAN.md