Initial commit: NOVA - Neuro-Optimizing Versatile Agent
Complete transformer LLM built from scratch with: Core Features: - Full transformer architecture (RoPE, RMSNorm, SwiGLU, KV-cache) - SentencePiece tokenizer (BPE/Unigram) - Training pipeline (AMP, gradient checkpointing, DDP) - Persona system with personality matrix (NO AI disclosure by default) - Genetic evolution (NOVA-EVO) for hyperparameter optimization - Legal-only data pipeline with license tracking - Chat interface (CLI + REST API) - Conversation memory (SQLite) Model Sizes: - 125M, 350M, 1.3B, 3B parameters - Local-first, runs on CPU or GPU - Python 3.10.6+, PyTorch 2.0+ Personas: - girlfriend_gentle (high warmth, high empathy) - girlfriend_playful (high humor, high playfulness) - girlfriend_supportive (balanced, default) Documentation: - Complete README with quickstart - Model card with ethical considerations - Privacy documentation (local-first, zero telemetry) - Data licenses and attribution - Contributing guide Infrastructure: - GitHub Actions CI/CD - Comprehensive test suite - Quickstart script - CLI tool License: Apache 2.0 🤖 Generated with Claude Code https://claude.com/claude-code Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
105
tests/test_tokenizer.py
Normal file
105
tests/test_tokenizer.py
Normal file
@@ -0,0 +1,105 @@
|
||||
"""
|
||||
Tests for NOVA tokenizer
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from nova_tokenizer import train_tokenizer, NovaTokenizer
|
||||
|
||||
|
||||
def test_tokenizer_training():
|
||||
"""Test training a tokenizer"""
|
||||
# Create temporary training file
|
||||
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as f:
|
||||
for i in range(100):
|
||||
f.write(f"This is sentence number {i}. Hello world!\n")
|
||||
temp_file = f.name
|
||||
|
||||
# Create temporary output
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
output_prefix = str(Path(tmpdir) / "test_tokenizer")
|
||||
|
||||
# Train
|
||||
model_path = train_tokenizer(
|
||||
input_files=[temp_file],
|
||||
model_prefix=output_prefix,
|
||||
vocab_size=500,
|
||||
model_type='bpe',
|
||||
)
|
||||
|
||||
assert Path(model_path).exists()
|
||||
assert model_path.endswith('.model')
|
||||
|
||||
# Clean up
|
||||
Path(temp_file).unlink()
|
||||
|
||||
|
||||
def test_tokenizer_encode_decode():
|
||||
"""Test encoding and decoding"""
|
||||
# Create and train a tiny tokenizer
|
||||
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as f:
|
||||
f.write("hello world " * 100)
|
||||
temp_file = f.name
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
output_prefix = str(Path(tmpdir) / "test_tok")
|
||||
|
||||
model_path = train_tokenizer(
|
||||
input_files=[temp_file],
|
||||
model_prefix=output_prefix,
|
||||
vocab_size=100,
|
||||
)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = NovaTokenizer(model_path)
|
||||
|
||||
# Test encode/decode
|
||||
text = "hello world"
|
||||
ids = tokenizer.encode(text, add_bos=False, add_eos=False)
|
||||
|
||||
assert isinstance(ids, list)
|
||||
assert len(ids) > 0
|
||||
|
||||
decoded = tokenizer.decode(ids, skip_special_tokens=True)
|
||||
# May not be exact due to tokenization, but should be similar
|
||||
assert "hello" in decoded.lower()
|
||||
|
||||
Path(temp_file).unlink()
|
||||
|
||||
|
||||
def test_tokenizer_batch():
|
||||
"""Test batch encoding"""
|
||||
# Quick test with dummy tokenizer
|
||||
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as f:
|
||||
f.write("test " * 100)
|
||||
temp_file = f.name
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
output_prefix = str(Path(tmpdir) / "batch_tok")
|
||||
|
||||
model_path = train_tokenizer(
|
||||
input_files=[temp_file],
|
||||
model_prefix=output_prefix,
|
||||
vocab_size=100,
|
||||
)
|
||||
|
||||
tokenizer = NovaTokenizer(model_path)
|
||||
|
||||
# Batch encode
|
||||
texts = ["hello", "world", "test"]
|
||||
batch_ids = tokenizer.encode_batch(texts, add_bos=False, add_eos=False)
|
||||
|
||||
assert len(batch_ids) == 3
|
||||
assert all(isinstance(ids, list) for ids in batch_ids)
|
||||
|
||||
# Batch decode
|
||||
decoded = tokenizer.decode_batch(batch_ids)
|
||||
|
||||
assert len(decoded) == 3
|
||||
|
||||
Path(temp_file).unlink()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v"])
|
Reference in New Issue
Block a user