# NOVA Model Card ## Model Details **Name:** NOVA (Neuro-Optimizing Versatile Agent) **Version:** 0.1.0 **Date:** 2025 **License:** Apache 2.0 **Type:** Decoder-only transformer language model ### Model Sizes NOVA comes in four sizes: | Size | Parameters | Layers | Hidden Size | Attention Heads | Context Length | |------|-----------|--------|-------------|-----------------|----------------| | 125M | 125M | 12 | 768 | 12 | 2048 | | 350M | 350M | 24 | 1024 | 16 | 2048 | | 1.3B | 1.3B | 24 | 2048 | 32 (8 KV) | 2048 | | 3B | 3B | 32 | 2560 | 32 (8 KV) | 4096 | ### Architecture - **Positional Encoding:** RoPE (Rotary Position Embedding) - **Normalization:** RMSNorm (default) or LayerNorm - **Activation:** SwiGLU (default), GeGLU, or GELU - **Attention:** Multi-head with optional grouped-query attention (GQA) - **Features:** KV-cache, gradient checkpointing, Flash Attention support ## Intended Use ### Primary Use Cases - **Personal companion AI:** Conversational agent with customizable personas - **Local inference:** Privacy-focused applications on consumer hardware - **Research:** Transformer architecture experimentation - **Education:** Learning about modern LLM implementation ### Out of Scope - **Production deployment without safety measures:** Additional content filtering recommended - **High-stakes decisions:** Not suitable for medical, legal, or financial advice - **Scalable services:** Designed for local/personal use, not cloud deployment ## Training Data NOVA uses **only legally licensed datasets**: ### Approved Sources - **Public Domain:** Project Gutenberg books - **CC0/CC-BY:** Wikipedia, OpenWebText, C4 corpus - **Open Licensed:** The Pile (ArXiv), OSI-approved code datasets ### License Tracking All training data sources logged in `license_ledger.json` with: - Source name and URL - License type - Download date - Data provenance ### Exclusions - No scraped data without verified licenses - No copyrighted material - No personally identifiable information (PII) - No user data without explicit consent ## Training Procedure ### Hyperparameters Default training configuration (125M): ```yaml batch_size: 8 gradient_accumulation: 4 learning_rate: 3e-4 weight_decay: 0.1 warmup_steps: 1000 max_steps: 100000 optimizer: AdamW lr_schedule: cosine with warmup ``` ### Hardware - **Minimum:** CPU (4+ cores), 8GB RAM - **Recommended:** NVIDIA GPU (8GB+ VRAM), 16GB+ RAM - **Optimal:** NVIDIA GPU (24GB+ VRAM), 32GB+ RAM ### Optimizations - **Mixed Precision:** AMP (Automatic Mixed Precision) on GPU - **Gradient Checkpointing:** Reduces memory usage - **Distributed Training:** DDP (DistributedDataParallel) support ## Evaluation ### Metrics - **Perplexity:** Language modeling quality - **Latency:** Inference speed (tokens/second) - **Memory:** Peak RAM/VRAM usage - **Persona Adherence:** Style consistency with selected persona ### Benchmarks (To be added as pre-trained models become available) ## Persona System ### Design Philosophy NOVA includes a **personality matrix** system for controllable conversational style: - **No AI Disclosure by Default:** `always_disclose: false` - **Private Use Context:** Designed for personal, local deployment - **Customizable:** Users can create custom personas ### Personality Traits Eight traits (0.0-1.0) that modulate generation: 1. Warmth 2. Humor 3. Empathy 4. Decisiveness 5. Creativity 6. Intimacy 7. Playfulness 8. Formality ### Default Personas - **girlfriend_gentle:** High warmth, high empathy - **girlfriend_playful:** High humor, high playfulness - **girlfriend_supportive:** Balanced traits (default) ## Ethical Considerations ### Privacy - **Local-First:** All processing on-device - **No Telemetry:** Zero data collection - **User Control:** Complete control over data and models ### Bias and Fairness - **Training Data Bias:** Inherits biases from source datasets - **Mitigation:** Use diverse, openly licensed sources - **Ongoing Work:** Bias evaluation and mitigation strategies ### Content Safety - **Basic Filters:** Profanity and unsafe content detection - **Limitations:** Not a complete safety solution - **Recommendation:** Additional filtering for public-facing use ### AI Disclosure - **Configurable:** `always_disclose` setting in persona config - **Default:** False (for private, personal use) - **Recommendation:** Enable for any public or shared deployment ## Limitations ### Technical - **Small Context:** 2048-4096 tokens (not suitable for long documents) - **Compute:** Smaller models may have lower quality than larger LLMs - **Hallucination:** May generate factually incorrect information ### Use Case - **Not a knowledge base:** May not have up-to-date information - **Not a specialist:** General-purpose, not domain-specific - **Not production-ready (as-is):** Requires additional safety/filtering ## Evolutionary Algorithm (NOVA-EVO) ### Purpose Optional genetic algorithm for automatic configuration optimization: - **Hyperparameter Search:** Learning rate, batch size, warmup - **Architecture Search:** Activation, normalization, positional encoding - **Multi-Objective:** Optimizes loss, latency, memory simultaneously ### Fitness Metrics - **Loss/Perplexity:** (50% weight) - **Latency:** (20% weight) - **Memory:** (20% weight) - **Quality:** (10% weight) ### Compute Budget - **Small:** 20 individuals, 10 generations (~6-12 hours) - **Medium:** 40 individuals, 20 generations (~24-48 hours) - **Large:** 100 individuals, 50 generations (~1-2 weeks) ## Contact For questions, issues, or contributions: - **GitHub:** [github.com/yourusername/nova](https://github.com/yourusername/nova) - **Issues:** [github.com/yourusername/nova/issues](https://github.com/yourusername/nova/issues) ## Citation ```bibtex @software{nova2025, title={NOVA: Neuro-Optimizing Versatile Agent}, author={NOVA Project Contributors}, year={2025}, url={https://github.com/yourusername/nova}, license={Apache-2.0} } ``` ## Acknowledgments - Transformer architecture inspired by GPT, LLaMA, and modern LLM research - RoPE, RMSNorm, SwiGLU from recent papers (Su et al., Zhang et al., Shazeer et al.) - Open source community for datasets and tools --- **Last Updated:** 2025 **Model Card Version:** 1.0