import torch import torch.nn as nn import torch.nn.functional as F # Hyperparameters block_size = 256 num_embed = 512 # Increased embedding size num_heads = 8 num_layers = 12 # Increased number of layers dropout = 0.3 class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(num_embed, head_size) self.query = nn.Linear(num_embed, head_size) self.value = nn.Linear(num_embed, head_size) self.register_buffer( "tril", torch.tril(torch.ones(block_size, block_size)) ) self.dropout = nn.Dropout(dropout) def forward(self, x): B, T, C = x.shape k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2, -1) * C**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(num_embed, num_embed) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): def __init__(self, num_embed): super().__init__() self.net = nn.Sequential( nn.Linear(num_embed, 4 * num_embed), nn.ReLU(), nn.Linear(4 * num_embed, num_embed), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, num_embed, num_head): super().__init__() head_size = num_embed // num_head self.sa = MultiHeadAttention(num_head, head_size) self.ff = FeedForward(num_embed) self.ln1 = nn.LayerNorm(num_embed) self.ln2 = nn.LayerNorm(num_embed) def forward(self, x): y = self.sa(x) x = self.ln1(x + y) y = self.ff(x) x = self.ln2(x + y) return x class GPT(nn.Module): def __init__(self, vocab_size): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, num_embed) self.position_embedding_table = nn.Embedding(block_size, num_embed) self.blocks = nn.Sequential( *[Block(num_embed, num_heads) for _ in range(num_layers)] ) self.ln = nn.LayerNorm(num_embed) self.lm_head = nn.Linear(num_embed, vocab_size) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.shape tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table( torch.arange(T, device=idx.device) ) x = tok_emb + pos_emb x = self.blocks(x) x = self.ln(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B * T, C) targets = targets.view(B * T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens, temperature): for _ in range(max_new_tokens): idx_cond = idx[:, -block_size:] logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx def encode(s, string_to_int): return [string_to_int.get(c, string_to_int[""]) for c in s] def decode(lst, int_to_string): return "".join([int_to_string[i] for i in lst]) def load_model(vocab_size, model_path=None): model = GPT(vocab_size) if model_path: try: model.load_state_dict(torch.load(model_path)) print("Model loaded successfully.") except FileNotFoundError: print("No pre-trained model found. Initialized a new model.") return model