import torch import torch.nn as nn import torch.nn.functional as F import mmap import random device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters batch_size = 64 block_size = 256 max_iters = 200 learning_rate = 2e-5 eval_iters = 100 num_embed = 384 # Ensure consistency in naming num_heads = 8 num_layers = 8 dropout = 0.2 chars = "" with open("vocab.txt", "r", encoding="utf-8") as f: text = f.read() chars = sorted(list(set(text))) vocab_size = len(chars) string_to_int = {ch: i for i, ch in enumerate(chars)} int_to_string = {i: ch for i, ch in enumerate(chars)} def encode(s): return [string_to_int[c] for c in s] def decode(lst): return "".join([int_to_string[i] for i in lst]) def get_random_chunk(split): filename = "train_split.txt" if split == "train" else "eval_split.txt" with open(filename, "rb") as f: with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm: file_size = len(mm) start = random.randint(0, file_size - block_size * batch_size) mm.seek(start) block = mm.read(block_size * batch_size - 1) decoded_block = block.decode("utf-8", errors="ignore").replace( "\r", "" ) data = torch.tensor(encode(decoded_block), dtype=torch.long) return data def get_batch(split): data = get_random_chunk(split) ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i : i + block_size] for i in ix]) y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix]) x, y = x.to(device), y.to(device) return x, y class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(num_embed, head_size) self.query = nn.Linear(num_embed, head_size) self.value = nn.Linear(num_embed, head_size) self.register_buffer( "tril", torch.tril(torch.ones(block_size, block_size)) ) self.dropout = nn.Dropout(dropout) def forward(self, x): B, T, C = x.shape k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2, -1) * C**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(num_embed, num_embed) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): def __init__(self, num_embed): super().__init__() self.net = nn.Sequential( nn.Linear(num_embed, 4 * num_embed), nn.ReLU(), nn.Linear(4 * num_embed, num_embed), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, num_embed, num_head): super().__init__() head_size = num_embed // num_head self.sa = MultiHeadAttention(num_head, head_size) self.ff = FeedForward(num_embed) self.ln1 = nn.LayerNorm(num_embed) self.ln2 = nn.LayerNorm(num_embed) def forward(self, x): y = self.sa(x) x = self.ln1(x + y) y = self.ff(x) x = self.ln2(x + y) return x class GPT(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, num_embed) self.position_embedding_table = nn.Embedding(block_size, num_embed) self.blocks = nn.Sequential( *[Block(num_embed, num_heads) for _ in range(num_layers)] ) self.ln = nn.LayerNorm(num_embed) self.lm_head = nn.Linear(num_embed, vocab_size) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.shape tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table( torch.arange(T, device=idx.device) ) x = tok_emb + pos_emb x = self.blocks(x) x = self.ln(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B * T, C) targets = targets.view(B * T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -block_size:] logits, loss = self(idx_cond) logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx model = GPT().to(device) @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ["train", "val"]: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean().item() model.train() return out optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) for iter in range(max_iters): if iter % eval_iters == 0: losses = estimate_loss() print( f"step {iter}: train loss {losses['train']:.3f}, " f"val loss {losses['val']:.3f}" ) xb, yb = get_batch("train") logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() print(loss.item()) torch.save(model.state_dict(), "phoebe_model.pt") print("Model Saved!")