Files
Pheobe/phoebe/gpt_model.py

151 lines
4.6 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
# Hyperparameters
batch_size = 64
block_size = 256
num_embed = 384 # Ensure consistency in naming
num_heads = 8
num_layers = 8
dropout = 0.2
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(num_embed, head_size)
self.query = nn.Linear(num_embed, head_size)
self.value = nn.Linear(num_embed, head_size)
self.register_buffer(
"tril", torch.tril(torch.ones(block_size, block_size))
)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(num_embed, num_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self, num_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(num_embed, 4 * num_embed),
nn.ReLU(),
nn.Linear(4 * num_embed, num_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, num_embed, num_head):
super().__init__()
head_size = num_embed // num_head
self.sa = MultiHeadAttention(num_head, head_size)
self.ff = FeedForward(num_embed)
self.ln1 = nn.LayerNorm(num_embed)
self.ln2 = nn.LayerNorm(num_embed)
def forward(self, x):
y = self.sa(x)
x = self.ln1(x + y)
y = self.ff(x)
x = self.ln2(x + y)
return x
class GPT(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, num_embed)
self.position_embedding_table = nn.Embedding(block_size, num_embed)
self.blocks = nn.Sequential(
*[Block(num_embed, num_heads) for _ in range(num_layers)]
)
self.ln = nn.LayerNorm(num_embed)
self.lm_head = nn.Linear(num_embed, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(
torch.arange(T, device=idx.device)
)
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
def encode(s, string_to_int):
# Replace unknown characters with a special token (e.g., "<unk>")
return [string_to_int.get(c, string_to_int["<unk>"]) for c in s]
def decode(lst, int_to_string):
return "".join([int_to_string[i] for i in lst])
def load_model(vocab_size, model_path=None):
model = GPT(vocab_size)
if model_path:
try:
model.load_state_dict(torch.load(model_path))
print("Model loaded successfully.")
except FileNotFoundError:
print("No pre-trained model found. Initialized a new model.")
return model