Files
vivi/talk_to_vivi.py

109 lines
3.8 KiB
Python

import torch
import torch.nn as nn
import json
# Define model
class VivianTransformer(nn.Module):
def __init__(self, vocab_size, d_model=128, n_layers=2, n_heads=4, d_ff=512):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = nn.Parameter(torch.randn(1, 512, d_model))
encoder_layer = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout=0.1)
self.transformer = nn.TransformerEncoder(encoder_layer, n_layers)
self.fc_out = nn.Linear(d_model, vocab_size)
def forward(self, x):
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
x = self.transformer(x)
return self.fc_out(x)
# Check device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
if device.type == 'cuda':
print(f"GPU: {torch.cuda.get_device_name(0)}")
else:
print("Warning: CUDA not available. Running on CPU will be slower.")
# Load vocab
try:
with open('vocab.json', 'r') as f:
vocab = json.load(f)
except FileNotFoundError:
print("Error: vocab.json not found. Run build_tokenizer.py first.")
exit(1)
# Load model
try:
model = VivianTransformer(len(vocab)).to(device)
model.load_state_dict(torch.load('vivi_finetuned.pt', map_location=device))
except FileNotFoundError:
print("Error: vivi_finetuned.pt not found. Trying vivi_base.pt...")
try:
model.load_state_dict(torch.load('vivi_base.pt', map_location=device))
except FileNotFoundError:
print("Error: vivi_base.pt not found. Run train_vivi.py first.")
exit(1)
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
model.eval()
# Reverse vocab for decoding
id2word = {idx: word for word, idx in vocab.items()}
# Context memory
context_memory = []
memory_size = 5
def generate_response(prompt, max_len=32, p=0.9):
global context_memory
context_memory.append(prompt)
if len(context_memory) > memory_size:
context_memory = context_memory[-memory_size:]
input_text = ' '.join(context_memory).lower()
input_ids = [vocab['<s>']] + [vocab.get(word, vocab['<unk>']) for word in input_text.split()]
input_tensor = torch.tensor([input_ids], device=device)
with torch.no_grad():
for _ in range(max_len - len(input_ids)):
output = model(input_tensor)
logits = output[:, -1, :]
probs = torch.softmax(logits, dim=-1)
probs, indices = probs.sort(descending=True)
cum_probs = torch.cumsum(probs, dim=-1)
mask = cum_probs <= p
if not mask.any():
mask[0] = True
probs = probs[mask]
indices = indices[mask]
next_word_id = torch.multinomial(probs, 1).item() # Get scalar index
next_word_tensor = torch.tensor([[indices[next_word_id]]], device=device)
input_tensor = torch.cat([input_tensor, next_word_tensor], dim=1)
if indices[next_word_id].item() == vocab['</s>']:
break
response_ids = input_tensor[0, len(input_ids):].tolist()
response = ' '.join(id2word.get(idx, '<unk>') for idx in response_ids if idx != vocab['<pad>'])
context_memory.append(response)
return response
# Save conversations
conversations = []
try:
with open('vivi_conversations.json', 'r') as f:
conversations = json.load(f)
except FileNotFoundError:
pass
# Interactive loop
print("Chat with Vivi! Type 'exit' or 'quit' to stop.")
while True:
user_input = input("You: ")
if user_input.lower() in ['exit', 'quit']:
break
response = generate_response(user_input)
print(f"Vivi: {response}")
conversations.append({"user": user_input, "vivi": response})
with open('vivi_conversations.json', 'w') as f:
json.dump(conversations, f, indent=2)