fixed the dashboard

This commit is contained in:
Dani 2025-04-30 18:55:31 -04:00
parent a8b3129806
commit 6067337dc8
3 changed files with 66 additions and 29 deletions

View File

@ -60,19 +60,34 @@ def update_next_cycle(seconds):
def get_status_summary(): def get_status_summary():
progress = load_progress() progress_data = load_progress()
books = get_books() progress = progress_data.get("progress", {})
current_book = books[0] if books else None current_book = None
current_line = progress.get(current_book, 0) current_line = 0
# Find the book with the highest progress (e.g., currently being read)
if progress:
completed = set(progress_data.get("completed", []))
in_progress = {k: v for k, v in progress.items() if k not in completed}
if in_progress:
current_book = max(in_progress.items(), key=lambda x: x[1])[0]
current_line = in_progress[current_book]
current_line = progress[current_book]
total_lines = 1 total_lines = 1
if current_book: if current_book:
with open(f"books/{current_book}", "r", encoding="utf-8") as f: book_path = os.path.join("data", "books", current_book)
total_lines = len(f.readlines()) if os.path.exists(book_path):
with open(book_path, "r", encoding="utf-8") as f:
total_lines = len(f.readlines())
else:
current_book = None
current_line = 0
return { return {
"current_book": current_book, "current_book": current_book,
"current_line": current_line, "current_line": current_line,
"percent_done": round((current_line / total_lines) * 100, 2), "percent_done": round((current_line / total_lines) * 100, 2) if total_lines > 0 else 0,
"memory_size": len(load_context()), "memory_size": len(load_context()),
"vocab_size": get_vocab_size(), "vocab_size": get_vocab_size(),
"brainmap_size": len(get_brainmap()), "brainmap_size": len(get_brainmap()),
@ -104,26 +119,14 @@ def growth():
@app.route("/brainmap") @app.route("/brainmap")
def brainmap(): def brainmap():
map_data = get_brainmap() try:
with open("data/memory/brainmap_cache.json", "r", encoding="utf-8") as f:
nodes = [] cached = json.load(f)
links = [] nodes = cached.get("nodes", [])
MIN_LINK_WEIGHT = 2 # only show links seen at least 2 times links = cached.get("links", [])
seen_words = set() except Exception as e:
print(f"[Dashboard] Failed to load brainmap cache: {e}")
for word, connections in map_data.items(): nodes, links = [], []
for linked_word, weight in connections.items():
if weight >= MIN_LINK_WEIGHT:
links.append({
"source": word,
"target": linked_word,
"value": weight
})
seen_words.add(word)
seen_words.add(linked_word)
for word in seen_words:
nodes.append({"id": word})
return render_template("brainmap.html", nodes=json.dumps(nodes), links=json.dumps(links)) return render_template("brainmap.html", nodes=json.dumps(nodes), links=json.dumps(links))

View File

@ -3,7 +3,8 @@ import json
import os import os
from utils.unicleaner import clean_unicode from utils.unicleaner import clean_unicode
BRAINMAP_PATH = "data/memory/brainmap.json" BRAINMAP_PATH = "data/memory/brainmap.json" # actual connection data
BRAINMAP_CACHE_PATH = "data/memory/brainmap_cache.json" # for dashboard rendering only
brainmap = {} brainmap = {}
MAX_CONNECTIONS = 50 # Max neighbors to keep per word MAX_CONNECTIONS = 50 # Max neighbors to keep per word
@ -96,3 +97,35 @@ def prune_brainmap(min_neighbors=2, min_strength=2):
def get_brainmap(): def get_brainmap():
return brainmap return brainmap
def refresh_brainmap_cache(min_weight=5, max_nodes=300):
map_data = get_brainmap()
links = []
seen_words = set()
for word, connections in map_data.items():
if not isinstance(connections, dict):
print(f"[Brainmap] Skipping corrupted entry: {word} => {type(connections)}")
continue
for linked_word, weight in connections.items():
if weight >= min_weight:
links.append({
"source": word,
"target": linked_word,
"value": weight
})
seen_words.add(word)
seen_words.add(linked_word)
nodes = [{"id": word} for word in seen_words]
if len(nodes) > max_nodes:
nodes = nodes[:max_nodes]
node_set = {n["id"] for n in nodes}
links = [l for l in links if l["source"] in node_set and l["target"] in node_set]
os.makedirs("data/memory", exist_ok=True)
with open(BRAINMAP_CACHE_PATH, "w", encoding="utf-8") as f:
json.dump({"nodes": nodes, "links": links}, f, indent=2)

View File

@ -2,7 +2,7 @@ import torch
import time import time
from model.dynamic_expand import expand_model_if_needed, _last_expansion_time from model.dynamic_expand import expand_model_if_needed, _last_expansion_time
from model.brain_state import model, tokenizer, DEVICE, loss_fn, optimizer, scheduler from model.brain_state import model, tokenizer, DEVICE, loss_fn, optimizer, scheduler
from model.brainmap import add_to_brainmap from model.brainmap import add_to_brainmap, refresh_brainmap_cache
from model.journal import record_to_journal from model.journal import record_to_journal
from context.context import add_to_context, get_recent_context from context.context import add_to_context, get_recent_context
@ -65,6 +65,7 @@ async def train_on_message(text: str, source: str = "user"):
add_to_brainmap(augmented_text.split()) add_to_brainmap(augmented_text.split())
add_to_context(text, source=source) add_to_context(text, source=source)
refresh_brainmap_cache()
record_to_journal({ record_to_journal({
"timestamp": time.time(), "timestamp": time.time(),