fixed the dashboard
This commit is contained in:
parent
a8b3129806
commit
6067337dc8
@ -60,19 +60,34 @@ def update_next_cycle(seconds):
|
||||
|
||||
|
||||
def get_status_summary():
|
||||
progress = load_progress()
|
||||
books = get_books()
|
||||
current_book = books[0] if books else None
|
||||
current_line = progress.get(current_book, 0)
|
||||
progress_data = load_progress()
|
||||
progress = progress_data.get("progress", {})
|
||||
current_book = None
|
||||
current_line = 0
|
||||
|
||||
# Find the book with the highest progress (e.g., currently being read)
|
||||
if progress:
|
||||
completed = set(progress_data.get("completed", []))
|
||||
in_progress = {k: v for k, v in progress.items() if k not in completed}
|
||||
if in_progress:
|
||||
current_book = max(in_progress.items(), key=lambda x: x[1])[0]
|
||||
current_line = in_progress[current_book]
|
||||
current_line = progress[current_book]
|
||||
|
||||
total_lines = 1
|
||||
if current_book:
|
||||
with open(f"books/{current_book}", "r", encoding="utf-8") as f:
|
||||
book_path = os.path.join("data", "books", current_book)
|
||||
if os.path.exists(book_path):
|
||||
with open(book_path, "r", encoding="utf-8") as f:
|
||||
total_lines = len(f.readlines())
|
||||
else:
|
||||
current_book = None
|
||||
current_line = 0
|
||||
|
||||
return {
|
||||
"current_book": current_book,
|
||||
"current_line": current_line,
|
||||
"percent_done": round((current_line / total_lines) * 100, 2),
|
||||
"percent_done": round((current_line / total_lines) * 100, 2) if total_lines > 0 else 0,
|
||||
"memory_size": len(load_context()),
|
||||
"vocab_size": get_vocab_size(),
|
||||
"brainmap_size": len(get_brainmap()),
|
||||
@ -104,26 +119,14 @@ def growth():
|
||||
|
||||
@app.route("/brainmap")
|
||||
def brainmap():
|
||||
map_data = get_brainmap()
|
||||
|
||||
nodes = []
|
||||
links = []
|
||||
MIN_LINK_WEIGHT = 2 # only show links seen at least 2 times
|
||||
seen_words = set()
|
||||
|
||||
for word, connections in map_data.items():
|
||||
for linked_word, weight in connections.items():
|
||||
if weight >= MIN_LINK_WEIGHT:
|
||||
links.append({
|
||||
"source": word,
|
||||
"target": linked_word,
|
||||
"value": weight
|
||||
})
|
||||
seen_words.add(word)
|
||||
seen_words.add(linked_word)
|
||||
|
||||
for word in seen_words:
|
||||
nodes.append({"id": word})
|
||||
try:
|
||||
with open("data/memory/brainmap_cache.json", "r", encoding="utf-8") as f:
|
||||
cached = json.load(f)
|
||||
nodes = cached.get("nodes", [])
|
||||
links = cached.get("links", [])
|
||||
except Exception as e:
|
||||
print(f"[Dashboard] Failed to load brainmap cache: {e}")
|
||||
nodes, links = [], []
|
||||
|
||||
return render_template("brainmap.html", nodes=json.dumps(nodes), links=json.dumps(links))
|
||||
|
||||
|
@ -3,7 +3,8 @@ import json
|
||||
import os
|
||||
from utils.unicleaner import clean_unicode
|
||||
|
||||
BRAINMAP_PATH = "data/memory/brainmap.json"
|
||||
BRAINMAP_PATH = "data/memory/brainmap.json" # actual connection data
|
||||
BRAINMAP_CACHE_PATH = "data/memory/brainmap_cache.json" # for dashboard rendering only
|
||||
brainmap = {}
|
||||
|
||||
MAX_CONNECTIONS = 50 # Max neighbors to keep per word
|
||||
@ -96,3 +97,35 @@ def prune_brainmap(min_neighbors=2, min_strength=2):
|
||||
|
||||
def get_brainmap():
|
||||
return brainmap
|
||||
|
||||
|
||||
def refresh_brainmap_cache(min_weight=5, max_nodes=300):
|
||||
map_data = get_brainmap()
|
||||
links = []
|
||||
seen_words = set()
|
||||
|
||||
for word, connections in map_data.items():
|
||||
if not isinstance(connections, dict):
|
||||
print(f"[Brainmap] Skipping corrupted entry: {word} => {type(connections)}")
|
||||
continue
|
||||
|
||||
for linked_word, weight in connections.items():
|
||||
if weight >= min_weight:
|
||||
links.append({
|
||||
"source": word,
|
||||
"target": linked_word,
|
||||
"value": weight
|
||||
})
|
||||
seen_words.add(word)
|
||||
seen_words.add(linked_word)
|
||||
|
||||
nodes = [{"id": word} for word in seen_words]
|
||||
|
||||
if len(nodes) > max_nodes:
|
||||
nodes = nodes[:max_nodes]
|
||||
node_set = {n["id"] for n in nodes}
|
||||
links = [l for l in links if l["source"] in node_set and l["target"] in node_set]
|
||||
|
||||
os.makedirs("data/memory", exist_ok=True)
|
||||
with open(BRAINMAP_CACHE_PATH, "w", encoding="utf-8") as f:
|
||||
json.dump({"nodes": nodes, "links": links}, f, indent=2)
|
||||
|
@ -2,7 +2,7 @@ import torch
|
||||
import time
|
||||
from model.dynamic_expand import expand_model_if_needed, _last_expansion_time
|
||||
from model.brain_state import model, tokenizer, DEVICE, loss_fn, optimizer, scheduler
|
||||
from model.brainmap import add_to_brainmap
|
||||
from model.brainmap import add_to_brainmap, refresh_brainmap_cache
|
||||
from model.journal import record_to_journal
|
||||
from context.context import add_to_context, get_recent_context
|
||||
|
||||
@ -65,6 +65,7 @@ async def train_on_message(text: str, source: str = "user"):
|
||||
|
||||
add_to_brainmap(augmented_text.split())
|
||||
add_to_context(text, source=source)
|
||||
refresh_brainmap_cache()
|
||||
|
||||
record_to_journal({
|
||||
"timestamp": time.time(),
|
||||
|
Loading…
x
Reference in New Issue
Block a user