Fixing how she replies.

This commit is contained in:
Dani 2025-04-27 14:03:37 -04:00
parent cde0068725
commit bae6bff5ce
2 changed files with 19 additions and 25 deletions

View File

@ -13,40 +13,32 @@ recent_dreams = []
@torch.no_grad()
def generate_response():
model.eval()
context_texts = get_recent_context(10)
seed_text = " ".join(context_texts[-1:])
tokens = tokenizer.tokenize(seed_text)
input_tensor = torch.tensor(tokens, dtype=torch.long, device=DEVICE).unsqueeze(0)
seed = torch.randint(0, model.head.out_features, (1, 1), device=DEVICE)
input_ids = seed
output_tokens = []
max_tokens = 32
for _ in range(max_tokens):
output = model(input_tensor)
logits = output[:, -1, :].squeeze(0)
for _ in range(50): # Max 50 tokens (short sentences)
output = model(input_ids)
next_token_logits = output[:, -1, :] / 0.8 # temperature 0.8
# Apply temperature (soft randomness)
temperature = 0.8
logits = logits / temperature
# Top-K Sampling
top_k = 40
values, indices = torch.topk(next_token_logits, k=top_k)
probs = F.softmax(values, dim=-1)
sampled_idx = torch.multinomial(probs, num_samples=1)
# Top-k sampling
k = 10
topk_logits, topk_indices = torch.topk(logits, k)
probs = torch.nn.functional.softmax(topk_logits, dim=-1)
next_token = topk_indices[torch.multinomial(probs, 1)].item()
next_token = indices.gather(-1, sampled_idx)
output_tokens.append(next_token)
output_tokens.append(next_token.item())
input_tensor = torch.cat([input_tensor, torch.tensor([[next_token]], device=DEVICE)], dim=1)
input_ids = torch.cat([input_ids, next_token.view(1, 1)], dim=1)
# Optional: stop if next_token maps to period, question mark, or exclamation
next_char = tokenizer.detokenize([next_token])
if any(p in next_char for p in [".", "?", "!"]):
# Break if punctuation (end of sentence)
word = tokenizer.detokenize(next_token.item())
if word in [".", "!", "?"]:
break
text = tokenizer.detokenize(output_tokens)
return text
return tokenizer.detokenize(output_tokens)
def score_sentence(sentence: str) -> float:

View File

@ -36,4 +36,6 @@ class Tokenizer:
return tokens
def detokenize(self, tokens):
if isinstance(tokens, int):
tokens = [tokens]
return " ".join(self.reverse_vocab.get(t, "<unk>") for t in tokens)