76 lines
2.1 KiB
Python
76 lines
2.1 KiB
Python
import random
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from model.memory import save_dream
|
|
from model.brain_state import model, tokenizer, DEVICE
|
|
from model.journal import record_to_journal
|
|
from model.trainer import train_on_message
|
|
from context.context import get_recent_context
|
|
|
|
recent_dreams = []
|
|
|
|
|
|
@torch.no_grad()
|
|
def generate_response():
|
|
model.eval()
|
|
seed = torch.randint(0, model.head.out_features, (1, 1), device=DEVICE)
|
|
input_ids = seed
|
|
output_tokens = []
|
|
|
|
for _ in range(50): # Max 50 tokens (short sentences)
|
|
output = model(input_ids)
|
|
next_token_logits = output[:, -1, :] / 0.8 # temperature 0.8
|
|
|
|
# Top-K Sampling
|
|
top_k = 40
|
|
values, indices = torch.topk(next_token_logits, k=top_k)
|
|
probs = F.softmax(values, dim=-1)
|
|
sampled_idx = torch.multinomial(probs, num_samples=1)
|
|
|
|
next_token = indices.gather(-1, sampled_idx)
|
|
|
|
output_tokens.append(next_token.item())
|
|
|
|
input_ids = torch.cat([input_ids, next_token.view(1, 1)], dim=1)
|
|
|
|
# Break if punctuation (end of sentence)
|
|
word = tokenizer.detokenize(next_token.item())
|
|
if word in [".", "!", "?"]:
|
|
break
|
|
|
|
return tokenizer.detokenize(output_tokens)
|
|
|
|
|
|
def score_sentence(sentence: str) -> float:
|
|
words = sentence.strip().split()
|
|
length = len(words)
|
|
diversity = len(set(words)) / (length + 1)
|
|
if length < 4:
|
|
return 0.0
|
|
return diversity * min(length, 20)
|
|
|
|
|
|
def daydream():
|
|
model.eval()
|
|
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
|
|
dream = []
|
|
|
|
for _ in range(12):
|
|
out = model(seed)
|
|
logits = out[:, -1, :]
|
|
probs = F.softmax(logits, dim=-1)
|
|
token = torch.multinomial(probs, num_samples=1)
|
|
dream.append(token.item())
|
|
seed = torch.cat([seed, token], dim=1)
|
|
|
|
sentence = tokenizer.detokenize(dream)
|
|
score = score_sentence(sentence)
|
|
|
|
if score > 0.45:
|
|
save_dream(sentence, score)
|
|
record_to_journal(sentence)
|
|
train_on_message(sentence)
|
|
|
|
if len(recent_dreams) > 10:
|
|
recent_dreams.pop(0)
|