Fixing the CUDA errors

Fixing replies.
This commit is contained in:
Dani 2025-04-27 13:51:49 -04:00
parent 99fddcab4d
commit cde0068725
2 changed files with 38 additions and 18 deletions

View File

@ -10,28 +10,43 @@ from context.context import get_recent_context
recent_dreams = []
@torch.no_grad()
def generate_response():
model.eval()
context_texts = get_recent_context(5)
if context_texts:
start = random.choice(context_texts)
seed_tokens = tokenizer.tokenize(start)
if seed_tokens:
seed = torch.tensor([seed_tokens[-1]], device=DEVICE).unsqueeze(0)
seed = seed[:, -128:]
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
context_texts = get_recent_context(10)
seed_text = " ".join(context_texts[-1:])
tokens = tokenizer.tokenize(seed_text)
output = model(seed)
pred = torch.argmax(output, dim=-1).squeeze().item()
input_tensor = torch.tensor(tokens, dtype=torch.long, device=DEVICE).unsqueeze(0)
# Clamp prediction into known vocab range
if pred >= tokenizer.next_id:
pred = random.randint(0, tokenizer.next_id - 1)
output_tokens = []
max_tokens = 32
return tokenizer.detokenize([pred])
for _ in range(max_tokens):
output = model(input_tensor)
logits = output[:, -1, :].squeeze(0)
# Apply temperature (soft randomness)
temperature = 0.8
logits = logits / temperature
# Top-k sampling
k = 10
topk_logits, topk_indices = torch.topk(logits, k)
probs = torch.nn.functional.softmax(topk_logits, dim=-1)
next_token = topk_indices[torch.multinomial(probs, 1)].item()
output_tokens.append(next_token)
input_tensor = torch.cat([input_tensor, torch.tensor([[next_token]], device=DEVICE)], dim=1)
# Optional: stop if next_token maps to period, question mark, or exclamation
next_char = tokenizer.detokenize([next_token])
if any(p in next_char for p in [".", "?", "!"]):
break
text = tokenizer.detokenize(output_tokens)
return text
def score_sentence(sentence: str) -> float:

View File

@ -28,7 +28,12 @@ def expand_model_if_needed():
# print(f"[Expand] Expanding model from {old_vocab_size} -> {current_vocab_size}")
old_state = model.state_dict()
new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE)
new_model = TinyTransformer(
vocab_size=current_vocab_size,
embed_dim=model.token_embed.embedding_dim,
depth=len(model.blocks),
heads=model.blocks[0].attn.heads
).to(DEVICE)
with torch.no_grad():
for name, param in new_model.named_parameters():