Compare commits

...

2 Commits

Author SHA1 Message Date
cde0068725 Fixing the CUDA errors
Fixing replies.
2025-04-27 13:51:49 -04:00
99fddcab4d Fixing another string of CUDA errors 2025-04-27 13:42:29 -04:00
4 changed files with 62 additions and 26 deletions

View File

@ -10,28 +10,43 @@ from context.context import get_recent_context
recent_dreams = []
@torch.no_grad()
def generate_response():
model.eval()
context_texts = get_recent_context(5)
if context_texts:
start = random.choice(context_texts)
seed_tokens = tokenizer.tokenize(start)
if seed_tokens:
seed = torch.tensor([seed_tokens[-1]], device=DEVICE).unsqueeze(0)
seed = seed[:, -128:]
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
else:
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE).unsqueeze(0)
context_texts = get_recent_context(10)
seed_text = " ".join(context_texts[-1:])
tokens = tokenizer.tokenize(seed_text)
output = model(seed)
pred = torch.argmax(output, dim=-1).squeeze().item()
input_tensor = torch.tensor(tokens, dtype=torch.long, device=DEVICE).unsqueeze(0)
# Clamp prediction into known vocab range
if pred >= tokenizer.next_id:
pred = random.randint(0, tokenizer.next_id - 1)
output_tokens = []
max_tokens = 32
return tokenizer.detokenize([pred])
for _ in range(max_tokens):
output = model(input_tensor)
logits = output[:, -1, :].squeeze(0)
# Apply temperature (soft randomness)
temperature = 0.8
logits = logits / temperature
# Top-k sampling
k = 10
topk_logits, topk_indices = torch.topk(logits, k)
probs = torch.nn.functional.softmax(topk_logits, dim=-1)
next_token = topk_indices[torch.multinomial(probs, 1)].item()
output_tokens.append(next_token)
input_tensor = torch.cat([input_tensor, torch.tensor([[next_token]], device=DEVICE)], dim=1)
# Optional: stop if next_token maps to period, question mark, or exclamation
next_char = tokenizer.detokenize([next_token])
if any(p in next_char for p in [".", "?", "!"]):
break
text = tokenizer.detokenize(output_tokens)
return text
def score_sentence(sentence: str) -> float:

View File

@ -28,7 +28,12 @@ def expand_model_if_needed():
# print(f"[Expand] Expanding model from {old_vocab_size} -> {current_vocab_size}")
old_state = model.state_dict()
new_model = TinyTransformer(vocab_size=current_vocab_size).to(DEVICE)
new_model = TinyTransformer(
vocab_size=current_vocab_size,
embed_dim=model.token_embed.embedding_dim,
depth=len(model.blocks),
heads=model.blocks[0].attn.heads
).to(DEVICE)
with torch.no_grad():
for name, param in new_model.named_parameters():

View File

@ -1,4 +1,5 @@
import random
import asyncio
from context.context import load_context
from model.trainer import train_on_message
from model.dynamic_expand import expand_model_if_needed

View File

@ -23,7 +23,7 @@ def train_on_message(text: str, source: str = "user"):
expand_model_if_needed()
now = time.time()
if now - _last_expansion_time < 5: # If expansion happened within the last 5 seconds
if now - _last_expansion_time < 5:
print("[Train] Skipping to stabilize after expansion.")
return
@ -35,21 +35,32 @@ def train_on_message(text: str, source: str = "user"):
model.train()
context_texts = get_recent_context(10)
augmented_text = " ".join(context_texts + [text])
tokens = tokenizer.tokenize(augmented_text)
if len(tokens) < 2:
if not tokens or len(tokens) < 2:
return
max_token_id = model.head.out_features - 1
tokens = [min(t, max_token_id) for t in tokens]
if len(tokens) < 2:
# Clamp each token to be inside model's head size
clamped_tokens = []
for token in tokens:
if token > max_token_id:
clamped_tokens.append(max_token_id)
elif token < 0:
clamped_tokens.append(0)
else:
clamped_tokens.append(token)
# Clamp sequence length
clamped_tokens = clamped_tokens[:128]
if len(clamped_tokens) < 2:
return
tokens = tokens[:128]
input_tensor = torch.tensor(tokens[:-1], dtype=torch.long, device=DEVICE).unsqueeze(0)
target_tensor = torch.tensor(tokens[1:], dtype=torch.long, device=DEVICE).unsqueeze(0)
input_tensor = torch.tensor(clamped_tokens[:-1], dtype=torch.long, device=DEVICE).unsqueeze(0)
target_tensor = torch.tensor(clamped_tokens[1:], dtype=torch.long, device=DEVICE).unsqueeze(0)
opt = get_optimizer()
@ -63,5 +74,9 @@ def train_on_message(text: str, source: str = "user"):
log_loss(loss.item())
log_vocab_growth()
add_to_context(text, source=source)
except Exception as e:
print(f"[Train] Exception during training: {e}")
finally:
expand_lock.release()