Ruby/core/model.py

131 lines
4.5 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class GPTConfig:
"""Configuration for our GPT model."""
def __init__(
self,
vocab_size: int,
block_size: int,
n_layer: int = 8,
n_head: int = 8,
n_embd: int = 512,
):
self.vocab_size = vocab_size
self.block_size = block_size
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
class CausalSelfAttention(nn.Module):
"""A single multi-head causal self-attention layer."""
def __init__(self, config: GPTConfig):
super().__init__()
assert config.n_embd % config.n_head == 0
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
self.proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.head_dim = config.n_embd // config.n_head
# causal mask, buffer not a parameter
mask = torch.tril(torch.ones(config.block_size, config.block_size))
self.register_buffer("mask", mask)
def forward(self, x):
B, T, C = x.size()
k = self.key(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2)
q = self.query(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2)
# compute attention scores
att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim)
att = att.masked_fill(self.mask[:T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
v = self.value(x).view(B, T, self.n_head, self.head_dim).transpose(1, 2)
out = att @ v
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(out)
class MLP(nn.Module):
"""Feed-forward layer."""
def __init__(self, config: GPTConfig):
super().__init__()
self.fc1 = nn.Linear(config.n_embd, 4 * config.n_embd)
self.fc2 = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
return self.fc2(F.gelu(self.fc1(x)))
class Block(nn.Module):
"""Transformer block: attention + feed-forward."""
def __init__(self, config: GPTConfig):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
"""GPT language model from scratch."""
def __init__(self, config: GPTConfig):
super().__init__()
self.token_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.block_size = config.block_size
def forward(self, idx, targets=None):
B, T = idx.size()
tok_emb = self.token_emb(idx) # (B,T,C)
pos_emb = self.pos_emb[:, :T, :] # (1,T,C)
x = tok_emb + pos_emb
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
logits = self.head(x) # (B,T,vocab)
loss = None
if targets is not None:
# shift logits and targets for next-token prediction
logits = logits.view(B * T, -1)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def generate(
self,
idx,
max_new_tokens: int,
temperature: float = 1.0,
top_k: int = None
):
"""
Iteratively predict next token and append to sequence.
- idx is (B,T) starting context.
- Returns (B, T+max_new_tokens).
"""
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.block_size :]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
idx = torch.cat([idx, next_token], dim=1)
return idx